
K E I T H W A C L E N A

U S E G N U E M A C S
T H E P L A I N T E X T C O M P U T I N G E N V I R O N M E N T

use gnu emacs the plain text computing environment 5

Using Emacs is kind of like making a piece of art. You start with a big
block and you slowly chip away, bringing it closer and closer to what
you want. — Mary Rose Cook

[Emacs is] a Lisp Machine with several compatible user interface
modalities. Which is just amazingly helpful to [blind] people like
me [. . .] who are typically forgotten about these days. [. . .] Emacs is a
shining beacon in a dark age of canvases and decorative user interface
design. — Mario Lang

It wouldn’t make sense to start out with anything other than Emacs. I
don’t think there has been a piece of software which has had a larger
impact on my life. I began using this about fifteen years ago, and it has
followed me across operating systems, jobs, roles (I used it to manage
my teams), languages, and needs. Every time I start something new,
Emacs has been there to make it just a little easier, and the more I
do in it, the easier everything gets. I believe this power comes from
Emacs being the closest thing we have to a working Lisp Machine. —
Katherine Cox-Buday

Emacs outshines all other editing software in approximately the same
way that the noonday sun does the stars. It is not just bigger and
brighter; it simply makes everything else vanish. — Neal Stephenson

Emacs is the King of Editors because it’s a Lisp interpreter. Each and
every key you tap runs some Emacs Lisp code snippet, and since
Emacs Lisp is an interpreted language, that means that you can con-
figure any key to run any arbitrary code. You just, like, do it. — Lars
Magne Ingebrigtsen

I’m using Linux. A library that Emacs uses to communicate with Intel
hardware. — Erwin, #emacs, Freenode

OSs and GUIs come and go, only Emacs has lasting power. — Per
Abrahamsen

I am large, I contain multitudes. — Walt Whitman

https://usesthis.com/interviews/mary.rose.cook/
https://lists.gnu.org/archive/html/emacs-devel/2020-09/msg01260.html
https://usesthis.com/interviews/katherine.cox-buday/

Contents

I FUNDAMENTALS 29

Introduction 31

Emacs as Operating System 35

Quickstart 37

The Fundamental Emacs Concepts 43

The Keyboard and Key Bindings 49

Files, Buffers and Windows in Brief 59

Selecting Text: the Point, the Mark, and the Region 65

Cutting, Copying, and Pasting 69

Editing with Textual Objects 77

Other Ways to Move Around 89

8 keith waclena

Variables and Symbols 93

Help, Discovery, and Documentation 99

Info: The Emacs Documentation Reader 107

Messages, Errors, and Lossage 113

The Minibuffer 115

Completion 121

What is Text? 127

Buffers 131

Modes, Major and Minor 141

Application Buffers 151

Windows 153

The Mode Line in Detail 171

Frames 177

Files 181

Directory Editing with Dired 199

use gnu emacs the plain text computing environment 9

Searching . . . 219

. . . and Replacing 231

Meet the Greps 237

Regular Expressions 245

Unlimited Undo with Redo 251

Approaching Programming: Keyboard Macros 255

The Customize Facility 269

The Package Manager 275

Updates and Bugs 281

Exiting Emacs 285

Starting Emacs! 289

II ADDITIONAL TOPICS 293

Completion at Point 295

Registers 301

Rectangles 305

10 keith waclena

Bookmarks 311

Abbreviations 315

Recursive Edit 321

Visual Display and Color 323

Manipulating Plain Text 331

Folding Text 341

International Character Set Support 347

Remote File Editing with Tramp 355

Client / Server 363

Ubiquitous Capture & Note Taking 371

Org Mode 375

Printing 395

UNFINISHED Modal Editing 399

Third-Party Packages 401

Security Concerns 403

use gnu emacs the plain text computing environment 11

Authentication 407

Programming the Lisp Machine 411

The Emacs Community 425

III NEVER LEAVE EMACS: APPLICATIONS 427

External Commands, Shells and Terminals 431

Browsing the Web 447

The Calendar, Diary, and Clocks 459

Version Control 469

Diffing and Merging 479

Playing Music 493

Mail and News 497

Web and News Feeds (Syndication) 505

UNFINISHED Slideshow Presentations 509

UNFINISHED Address Book: The Insidious Big Brother Database (BBDB) 511

UNFINISHED Drawing Pictures 513

12 keith waclena

UNFINISHED DNS Lookups 515

UNFINISHED EUDC: Emacs Unified Directory Client (LDAP) 517

UNFINISHED FTP (File Transfer Protocol) 519

UNFINISHED Accessing SQL Databases 521

Editing Processes with proced 523

UNFINISHED Unix Manual Pages 527

UNFINISHED Calc 529

Passwords and Password Managers 531

EasyPG Assistant 533

UNFINISHED Emacs Speaks Statistics: Data Analysis 541

UNFINISHED Maps 543

UNFINISHED Chat 545

UNFINISHED Emacs as Window Manager 547

Games and Amusements 549

IV EMACS FOR. . . 553

use gnu emacs the plain text computing environment 13

UNFINISHED Emacs for Writers 555

UNFINISHED Emacs for Programmers 559

UNFINISHED Emacs for Web Developers 561

V THE BACK OF THE BOOK 563

Appendices 565

Bibliography 581

Index 593

Colophon 619

Photo and Illustration Credits 621

Acknowledgments 623

About the Author 625

List of Listings

List of Tables

1 Some More Prefix Keys 52

2 Examples of variables 94

3 Elisp Data Type Syntax 96

4 The Main Vertico Commands 123

5 ASCII Control Characters, Excepting Delete 130

6 buffer-menu-mode Commands 138

7 special-mode Key Bindings 152

8 The C-x 4 Family of Other-Window Commands 156

9 The C-x t Family of Tab Bar Commands 159

10 Window Resizing Commands 160

11 Frame Manipulation Commands 178

12 Resolving Modified Buffer vs File Conflicts 189

13 Prerequisite Software for Document Viewing 192

14 doc-view-mode Scrolling and Paging Commands 192

15 image-mode Scaling Commands 195

16 image-mode Scrolling Commands 195

17 Basic dired File Operations 201

18 The Dired Mark Keymap 205

19 Dired by Regular Expression 206

20 dired-mode Image Tagging and Commenting Commands 216

21 Isearch Yank Commands 226

22 Multi-Isearch Entry Points 229

23 Query Replace Actions 232

24 Case-smart M-% examples 233

25 query-replace-regexp Examples 235

18 keith waclena

26 grep-mode Bindings 238

27 Regular Expression Syntax Classes 248

28 Keyboard Macro Commands 260

29 Customization Commands 269

30 Package Menu Maintenance Commands 278

31 C-x C-c Modified File Prompt 285

32 Occasional Command-Line Options 290

33 Command-Line Options for Scripting 291

34 Register Commands and Types 301

35 Explicit Rectangle Commands 307

36 Old- and New-School Rectangle Commands 308

37 Bookmark Commands 311

38 Bookmark Menu Commands 313

39 Hi-Lock Mode Commands 328

40 M-x delete-duplicate-lines 332

41 Different Sorts 332

42 Typing déçût with latin-1-postfix 351

43 latin-1-postix Input Method Summary 351

44 Tramp Filename Syntax 356

45 emacsclient Options 365

46 Plain Printing Commands 395

47 PostScript Printing Commands 396

48 PostScript Spooling Commands 396

49 Htmlize Commands 397

50 Shell Commands 439

51 EWW Key Bindings 450

52 Browse URL Browsers 455

53 Calendar Motion Commands 460

54 Specific Calendar Dates and Scrolling 461

55 Calendar Holiday Commands 461

56 Calendar Astronomical Commands 462

use gnu emacs the plain text computing environment 19

57 To and From Other Calendar Systems 462

58 Calendar Diary Commands 464

59 Supported Version Control Systems 470

60 VC File Mode Commands 472

61 VC Dir Commands 478

62 Ediff Entry Points 483

63 Ediff Merge Entry Points 487

64 Ediff Session Group Commands 488

65 Ediff Directories Entry Points 489

66 *Proced* Buffer 523

67 proced Commands 524

68 *Proced* Buffer Filter Schemes 525

69 Commands in the EPA *Keys* Buffer 538

70 Encryption Commands in Dired 539

71 Photo and Illustration Credits 621

72 Licenses 621

Preface

This document was originally written around 1997 for GNU Emacs
version 19.29 and published under the title A Tutorial Introduction to
GNU Emacs. It has subsequently been updated for version 28.2, and
thoroughly revised and expanded. This is document version 28.2.133

as of 12 June 2023 and is an unfinished work-in-progress.
This work by Keith Waclena is copyright 2023 and is licensed

under a CC BY-NC-ND 3.0 License.
This document is also available in EPUB format and on the web.

There is an RSS feed to help you keep track of any updates to the
many unfinished chapters.

Keith Waclena <keith at lib.uchicago.edu>
Chicago

How to Use This Book

A book that tries to cover most of the enormous computing system
that is GNU Emacs seems to inevitably end up about as big as Emacs
itself. While I’ve tried to arrange the book to be readable straight
through from beginning to end, I doubt many will be inclined to
do so. So I’ve also tried to make it possible to skip directly to any
topic of interest by heavily hyperlinking back to any prerequisite
topics1. For example, if you skip to the chapter on running your shell 1 The PDF and EPUB versions of this

book contain all the links that the
HTML version does, so if your reader
doesn’t make links obvious by default,
you may want to enable that feature.

in Emacs, you’ll find the necessary links to fundamental topics you’ve
skipped over (say, renaming Buffers, directory editing, or Incremental
Search).

GNU Emacs has been around for 38 years, and because it debuted
many concepts now taken for granted, it also has its own way of
doing them, and even its own language for talking about them. So I
would for sure read The Fundamental Emacs Concepts; Files, Buffers and
Windows in Brief ; Selecting Text; and Cutting, Copying, and Pasting; and
at least glance at The Keyboard and Key Bindings.

The single most important thing is, while you’re reading, have
Emacs up and running so you can try things out as you read about

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://www2.lib.uchicago.edu/keith/emacs/emacs-tutorial.epub
https://www2.lib.uchicago.edu/keith/emacs/emacs-tutorial.html
https://www.lib.uchicago.edu/keith/emacs/feed.xml
http://www.lib.uchicago.edu/keith/

24 keith waclena

them. And be sure to try the built-in interactive learn-by-doing
Emacs tutorial; right now is not too soon to start it.

The Book Has an Init File

My recommendation is to learn the basics of Emacs with as few
customizations as possible. However, I do provide a minimal recom-
mended initial Init File (configuration file) that you can download
and install to improve your experience. It wouldn’t hurt to put this
off for the first few chapters, but if you feel like bailing on Emacs
before then, see if adding the book’s Init File changes your mind.

Notation

A number of Emacs technical terms are also common words. To min-
imize confusion, when I use the technical terms, I capitalize them. So
if I say, “Killing the Frame or Window in no way kills the associated
Buffer”, I’m talking about three Emacs data structures. But if I say,
“In this frame of reference, a window of opportunity exists to buffer
your data”, well, I don’t know what I’d be talking about, but it has
nothing to do with the Emacs data structures.

Note that in the many tables where I summarize the Emacs keystrokes
for a set of commands, I don’t follow this rule; instead, I try to cap-
italize words that might suggest a helpful mnemonic, as in this ex-
cerpt:

Keys Action
s h Show full Height in window
s w Show full Width in window
s b Show Both full height and width in window

There are many snippets of Emacs Lisp code in the book; a subset of
them are included in the book’s Init File. These snippets are labelled

Init Filewith a margin note like the one to the right.
One of the most basic facts about Emacs is that every key you

type potentially executes some Command. When I introduce a new
keystroke I use this format: C-e (move-end-of-line), which means
that the keystroke C-e invokes the Command named move-end-of-

line. See The Keyboard and Key Bindings for complete details.
I frequently mention various Unix commands and programs (often

because Emacs provides an interface to them). I use the Unix Man-
ual’s traditional notation for these in a fixed-pitch font, appending a
parenthesized section number to the command name. Examples are
ls(1), grep(1), sudo(8), etc.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 25

The Scope of the Book

This book describes GNU Emacs version 28.2, which is the latest
official release as of 12 June 2023; many operating systems or their
package managers will come with an older (possibly much older)
version by default. While Emacs has excellent backward compatibil-
ity, meaning everything you learn about it will probably still work
for literally decades, it also introduces new features and new ways
of doing old things all the time. If you’re running an older Emacs
than I am, you may occasionally find that a command or key binding
that I mention doesn’t exist, or acts somewhat differently; but mostly,
everything will work.

There also have been and still are other versions of “Emacs” be-
sides GNU Emacs, which can lead to differences as well. The most
notable these days is probably Aquamacs, a version specially for
Mac OS X, which besides its Mac-specific changes is (at this writing)
based on GNU Emacs version 25.3 from 2017—that’s three major re-
visions behind. You might ultimately prefer Aquamacs or another
Emacs, but this book will be most useful to you if you start out with
GNU Emacs; see Installing Emacs.

Additionally, some of my discussion will have a Unix focus, since
that’s what I use every day. Emacs works beautifully on mostly-Unix
operating systems (like Mac OS X and ChromeOS) and on completely
non-Unix OS’s, like Microsoft Windows, but some of my examples
will assume you’re running a true Unix, like GNU/Linux or one of
the BSDs. But really, Emacs makes all operating systems virtually
indistinguishable.

My emphasis in the book is on built-in features that ship with
Emacs. I occasionally mention or recommend various third-party
Packages (add-ons written and provided by people like you!) but I
don’t go into much detail and there’s no way I can keep up with the
huge third-party ecosystem.

In fact, some of the most important built-in Emacs subsystems
are so big that I can only give at best a glancing overview: most
notable are the calculator; Gnus (for email); Org Mode (for. . . well. . .
practically everything); and Emacs Lisp programming. The good
news is that each of these has its own built-in book-length document
(Emacs Lisp has two!).

The Fine Manual

Don’t fear or neglect the extensive built-in Emacs Manual; you can
start out reading it on the web but as you become familiar with
Emacs I think you’ll prefer reading it natively.

https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Emacs#Other_forks_of_GNU_Emacs
https://aquamacs.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html

26 keith waclena

The more time I spent writing this book, the more I had to double-
check things that I felt certain I fully understood decades ago: things
that, after all, I use every day! The result was two-fold:

1. I discovered that there’s a ton of new stuff I had no idea about—
being an Emacs user means a lifetime of learning ahead of you
(and what’s better than that?).

2. I also discovered that the manual is really one of the best software
user manuals ever written.

So, RTFM: Read The Fine Manual.

Audience

I’m afraid this book is of two (or more) minds about its intended
audience. When I wrote the first version in 1997, the audience was
librarians who were using Unix systems for the first time. When I
decided to expand the book during the pandemic, I didn’t want to
change the audience to solely tech-savvy programmers, but I did
want to include a lot of advanced stuff for tech types. The result is
that those programmers will find lots of basics to skim over, and the
non-programmers will find a certain amount of tech nerd stuff to
skip.2 2 Some Windows programmers may

find a lot of Unix stuff to skip.There are many fun and inspiring blog posts and videos of non-
programming Emacs users—writers of fiction, managers of program-
mers, people who found a new way to manage their note-taking—
and my fantasy is to find (or create!) some more, while perhaps con-
vincing the programmers that Emacs is much more than just another
IDE.

Terminology

Emacs has it’s own extensive jargon of technical terms; here are some
of the ones that might otherwise be puzzling.

I’ve also made up a few coinages of my own for the purposes of
this book (labeled “KW” so you don’t embarrass yourself by using
them).

alias an additional, equivalent name of a function or Command

binding the pairing of an event with a Command

buffer the places where text is entered, edited, or displayed

button a clickable region of text in a Buffer that invokes a Command

use gnu emacs the plain text computing environment 27

click to activate a Button or a link in a menu or in a Buffer, with the
mouse or by hitting Return when positioned there

Command a function intended to be used interactively by the user,
rather than used only by an Emacs Lisp programmer

current line the line in a Buffer where Point (the cursor) is

cut the modern term for what Emacs calls Kill

delete to remove text from a Buffer with no way to get it back (com-
pare Kill)

directory a structure on disk that holds files and other (sub-) directo-
ries; what non-Unix users call a folder

EIPNIF Everything Is Possible, Nothing Is Forbidden (KW); you can
change any aspect of Emacs’s behavior, even if it’s a really bad
idea

elisp Emacs Lisp, the dialect of the Lisp programming language that
implements Emacs

event an action that represents input to Emacs, mainly keystrokes, or
mouse-clicks or -drags

Frame an OS-managed window; modern term: window

glob to expand wildcard characters, typically in a wildcarded file-
name, or the special wildcard characters themselves (commonly *
and ?)

grep to search (after the Unix searching utility grep(1))

init file your Emacs initialization file: what non-Emacs users call a
config file

key binding the binding of a keystroke to a Command

Kill to remove text from a Buffer, saving it on the Kill Ring where it
can be easily retrieved later; modern equivalent: cut

operating system the software that runs all the other software on your
computer (including your phones and tablets) and interfaces with
your hardware, probably one of Android, Linux, Mac OS X, or
Microsoft Windows (Emacs runs on all of these)

OS operating system

paste the modern term for what Emacs calls Yank

https://en.wikipedia.org/wiki/Operating_system

28 keith waclena

Point the location in a Buffer where text would be inserted when you
type

regexp a regular expression

Region contiguous text you’re about to Kill, copy, or operate upon;
modern term: selection

regular expression a powerful kind of wildcard, pervasively used in
Unix and in Emacs for searching

RET means to hit the Return or Enter key

selection the modern term for what Emacs calls the Region

session the period of time from when you start Emacs to when you
exit it; may literally span months

subsystem a collection of Commands and Modes that together facili-
tate a coherent activity (KW)

Unix the operating system on which GNU Emacs was developed;
comes in many flavors, of which Linux is perhaps the best known

Visit to load a file into Emacs for editing

Window a division of a Frame; modern term: pane

Yank to insert previously Killed or copied text; modern term: paste

The Emacs manual also has a glossary, and the Emacs Wiki has
both a glossary page and a jargon page.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.emacswiki.org/emacs/Glossary
https://www.emacswiki.org/emacs/EmacsJargon

Part I

FUNDAMENTALS

Introduction

Figure 1: Emacs Splash Screen

What GNU Emacs Is

GNU Emacs is a free, portable, extensible, internationalized, self-
documenting text editor. That it is free means specifically that the
source code is freely copyable and redistributable, so Emacs can
never be discontinued and disappear. That it is portable means that
it runs on many computers under many different operating sys-
tems, so that you can probably count on being able to use the same
program no matter what computer you’re using. That it is extensi-
ble means that you can not only customize all aspects of its usage
(from keystrokes through fonts, colors, mousage and menus), but
that you, and the community, can modify and program Emacs, even
while Emacs is running, to do entirely new things that its designers
never thought of. That it is internationalized means that it has full
Unicode3 support, including bidirectional text and many input meth- 3 And support for many non-Unicode

coding systems and languages, in-
cluding Chinese-BIG5, Chinese-CNS,
Chinese-GB, Cyrillic-Alternativnyj,
Cyrillic-ISO, Cyrillic-KOI8, Devana-
gari, English, Ethiopic, Greek, Hebrew,
Japanese, Korean, Lao, Latin-1, Latin-2,
Latin-3, Latin-4, Latin-5, Thai, Tibetan,
and Vietnamese. ISO-2022 is supported,
so you can combine different coding
systems in the same buffer.

ods for non-Latin scripts. That it is self-documenting means that every
keystroke, menu item, and function can thoroughly explain itself
and its usage, and that Emacs contains 395,759 lines of hypertext
reference manuals and tutorial documentation about itself and its
subsystems.

http://www.gnu.org/software/emacs/index.html

32 keith waclena

Because of all this, GNU Emacs is an extremely successful pro-
gram (having been in continuous development for 38 years4), and 4 As of 2023; the original Emacs, GNU

Emacs’s predecessor, dates back almost
10 years earlier, to 1976; while GNU
Emacs was a complete reimplementa-
tion, the two programs are conceptually
identical.

does more for you than any other editor. It’s particularly good for
programmers. No matter what programming language you use,
Emacs probably provides a mode that makes it especially easy to edit
code in that language, providing syntax highlighting, context sen-
sitive indentation, and layout. It also allows you to compile your
programs inside Emacs, with links from error messages to source
code; debug your programs inside Emacs, with links to the source;
interact directly with the language interpreter (REPL); jump across
multiple files to the definition of a symbol in your source code; and
interact with your version control system5. 5 Whether Git, Mercurial, Fossil, GNU

Arch, Bazaar, CVS, Monotone, RCS,
SCCS/CSSC, or Subversion.

Emacs also provides many built-in applications such as:

• mail readers (at least half a dozen)

• web browsers (at least two)

• a powerful file manager like Windows Explorer (File Explorer) or
Apple’s macOS Finder

• interactive shells, logins (ssh, ftp, sudo), and terminal emulators

• a powerful and easy to use macro system to automate your tasks

• diffing and merging of files

• calendars, project planning, TODO lists, scheduling, and agendas

• a powerful infinite precision programmable calculator with sym-
bolic algebra and data graphics

• image, PDF, DVI, ebook (EPUB), OpenDocument, Microsoft Office,
and PostScript viewers, and inline images in plain text

• typesetting and publication of text or source code to HTML, PDF,
and presentation slideshows (this document is an example)

• literate programming

• interactive notebooks: that is, documents that contain live code,
data, equations, visualizations, and text

• client / server mode (connect to a running local Emacs from any
terminal, or to a remote Emacs running on a different computer)

• multilingual spell checking, dictionaries, and thesauri (available in
all of the above applications and subsystems, too)

• transparent editing of encrypted and compressed files, and of files
inside containers (like tar and zip archives)

https://en.wikipedia.org/wiki/File_manager
https://en.wikipedia.org/wiki/File_Explorer
https://en.wikipedia.org/wiki/Finder_(software)
https://en.wikipedia.org/wiki/Device_independent_file_format
https://en.wikipedia.org/wiki/EPUB
https://en.wikipedia.org/wiki/Literate_programming

use gnu emacs the plain text computing environment 33

• remote file editing (any file or directory you want to edit can be
transparently accessed via ssh, ftp and the like)

• spreadsheets (three)

• music players (at least half a dozen)

• chat / messaging systems (like IRC, Jabber, Slack)

• a window manager for X windows

• native Emacs games and interfaces to external games

• a Rogerian therapist (in case this is all a little overwhelming)

In addition, Emacs’s extensibility has resulted in a vibrant ecosys-
tem; users share packages that provide new functionality, and it’s
easy to browse a few thousand of these via the built-in package man-
ager, and install the ones of interest. Many more Emacs packages are
available on GitHub and in the Emacs Wiki.

Figure 2: Emacs as Operating System

The image above shows Emacs “in use”. It’s a little unrealistic in
that I, at least, never want that many windows open simultaneously,
but it’s a real screen shot. Going across the columns from left to
right, we have email (a folder and a message) and an agenda from
my project planner; OCaml source code with a compilation error
message and a type-throwback window; a Google search in one of
Emacs’s web browsers above a PDF; and finally, a directory in the file
manager, a shell, and a paused game of Tetris.

At the very bottom of the screen, I’m in the middle of typing an
Emacs command by its name (M-x list), and have hit TAB to get
completion — the completions window has temporarily popped up
and spans the width of the screen.

In the grey mode line along the bottom of the completions win-
dow (and replicated, albeit truncated, in slightly different form at

https://github.com/search?l=Emacs+Lisp&q=emacs&type=Repositories
https://www.emacswiki.org/
https://ocaml.org/

34 keith waclena

the bottom of every other window) you can see that I have incoming
email that I haven’t yet seen (red envelope icon) and an unseen chat
message from someone named “Tex”.

What GNU Emacs Is Not

First and foremost, Emacs is not a WYSIWYG word processor. This
is because Emacs leverages plain text to get maximum flexibility and
avoid lock-in to opaque file formats. But Emacs is also used to edit
and typeset documents by people who use document preparation
systems and markup languages like LATEX, Markdown, and Emacs’s
own Org markup language6. 6 This document is written in Org; the

HTML, PDF, and EPUB versions are
generated from the Org source code.

Actually, this is about the only thing I can think of that GNU
Emacs is not.

Emacs as Operating System

Emacs is one of those rare pieces of software that can change your
life. It’s not really a text editor, nor an IDE. It’s really the last re-
maining Lisp Machine, a synergistic system that you live in, which
replaces most of the dozens of single-purpose applications you’d oth-
erwise be using, some of which lock you into black-box file formats
or corporate licensing.

The more things you do in Emacs, the more those things multi-
plicatively enhance each other.

Imagine you use Emacs (as I do) for your document creation,
web site publishing, interactive development environment (IDE),
email, TODO lists, file manager, web browser (sometimes), shells and
terminals, calendar and agenda, and chat system. As a result, in all of
these:

• you use the same exact completion system (with history), whether
entering command names, file names, email addresses, or web urls

• you search with the exact same regular expression syntax and the
same keystrokes

• you can copy any text from anyplace7 7 How many times have you had to take
a screenshot of an error message from a
GUI application because the text wasn’t
copyable?

• you can search across all or a subset of the windows running these
applications at once (“which window did I see that error message
in?”; “which browser tab is that text in?”)

• you can dynamically highlight lines and words in various colors to
make them stand out or distinguish between them

• you automate tasks within and across all these systems with the
same macro facility

• you have the same spellcheck interface and dictionaries

• after a restart (we all have to reboot occasionally), you can have
most of these windows and files come back with everything (down
to your cursor location) exactly where you left it

https://en.wikipedia.org/wiki/Lisp_machine

36 keith waclena

• you configure and customize all these applications in the same
configuration language (and in a single file, unless you choose to
split it up), and the language is a complete programming language

• you can modify, extend, fix bugs, and generally hack all of these
applications, live, while they’re running

• you can program entirely new applications by combining func-
tions and elements from any of the others

Emacs insulates you from the operating system. If you full-screen
your Emacs, you will barely be able to tell whether it’s Linux, BSD,
Mac OS, Windows, or ChromeOS underneath. You can use the same
configuration everywhere, and since the config language is Lisp, you
have conditionals to make any OS- or computer-specific tweaks that
might be necessary. You can even load your config over the network
— from a web page if you like.

https://en.wikipedia.org/wiki/Lisp_(programming_language)

Quickstart

Installing Emacs

If you are running Unix, Emacs may already be installed. If not, it
will certainly be easily installed via your package manager.

Arch Linux sudo pacman -S emacs-nativecomp

Debian sudo apt-get install emacs

Fedora sudo yum install emacs

Ubuntu sudo apt-get install emacs

When I last used Mac OS X, Emacs came preinstalled, but was very
out of date. You could install an up-to-date version via one of the
Mac’s many third-party package managers (such as Homebrew), but
I recommend David Caldwell’s Emacs For Mac OS X8; it’s always 8 https://emacsformacosx.com/

up-to-date, and, as Caldwell says, is “Pure Emacs! No Extras! No
nonsense!”. I would discourage you from using Aquamacs, which
attempts to make a more Mac-like Emacs but ends up rendering it
painful to use (IMHO).

If you are running Microsoft Windows, I recommend the Free Soft-
ware Foundation (FSF)’s Windows build, available from the down-
load page9; note that on Windows, instead of running the emacs 9 http://www.gnu.org/software/emacs/

download.htmlexecutable, you want to run the runemacs script instead; a Windows
user will probably be most comfortable dragging it the task bar. You
can also install Emacs in the Windows Subsystem for Linux (WSL);
just follow the instructions above for whatever version of Linux you
chose. See the Appendix for how to install Emacs on a Chromebook;
you can even install Emacs on your Android phone.

For the cheapest possible complete Emacs computing environ-
ment, you can run Emacs on a $100 Raspberry Pi that comes with a
keyboard, mouse, and cable to connect to your TV.

And, since Emacs is free software, you can of course download
and compile your own copy from source.

https://emacsformacosx.com/
https://emacsformacosx.com/
http://www.gnu.org/software/emacs/download.html
http://www.gnu.org/software/emacs/download.html
http://www.gnu.org/software/emacs/download.html
http://www.gnu.org/software/emacs/download.html
https://en.wikipedia.org/wiki/Raspberry_Pi
http://www.gnu.org/software/emacs/download.html

38 keith waclena

Starting Up and Running Emacs

Emacs can run in two different modes: a graphical version, which
requires a window system like X11 (or the Mac or Windows native
interface), and a “text-only” terminal version, like old-school Unix
programs such as vi or vim. I say you should run the graphical ver-
sion; in the terminal version (forced via the -nw (“no windows”)
option if a window system is running), you won’t be able to display
images or combine multiple fonts, and many useful key combina-
tions will be impossible to type, requiring clunkier alternatives10. 10 In particular, C-h, the very important

Help character, will probably be taken
as Backspace and will delete characters;
the function keys may or may not work
for you (if they do, you can use F1 for
Help); and possibly nothing will work
as a Meta key (you can use the Escape
key instead).

Mouse-button and -motion combinations will be severely limited.
Note that using the graphical version doesn’t imply working in

a GUI style with heavy mouse action; I never use the mouse, and
configure my Emacs so that the graphical version looks like Emacs

in a terminal (right down to my beloved fixed-pitch font). However,
because I’m running the graphical version, I get better font and char-
acter set support, can view images and PDFs, and make use of all the
exotic keys on my keyboard. If what you like about an editor such as
vim is the way its invocation is tightly bound to your shell and work-
ing directory, or its fast startup speed, running the graphical Emacs
in client / server mode achieves exactly the same thing.

Unless you go out of your way to change this (e.g. with -nw), the
graphical version is what you’ll get if you invoke Emacs from an X11,
Mac, or Windows desktop launcher, or from a shell in a terminal
under one of those desktops. This book everywhere assumes you’re
running the graphical version.

Entering Emacs

To enter Emacs, you just say:

emacs

on the command line, or invoke it from your desktop via a launcher,
menu, or icon11. When it comes up, you won’t be editing any file. 11 If you like dark themes (what we

used to call “reverse video”), as in all
the screen shots in this book, you can
add the -rv option; later you can make
that your default, or choose one of
many other dark themes.

You can then use the file commands to read in files for editing. Alter-
natively, you can fire up Emacs with an initial file (or files) by saying:

emacs foo.py

Note that for many Emacs users, starting Emacs is something
that’s done very rarely: I only do it when I’ve needed to reboot my
computer. You don’t use Emacs the way you use vim, starting it in a
shell to edit one file, then exiting to compile, then lather rinse repeat.
Loading and unloading files, compiling, debugging, file manage-
ment, version control, and everything else is done inside Emacs with
special commands that provide very tight and seamless integration.

use gnu emacs the plain text computing environment 39

If you really prefer to work in a many-sessions, multi-terminal style
after trying the native Emacs approach, the way to do it is via client
/ server mode: start up an Emacs server, and then repeatedly run
emacsclient in your terminals as you navigate around, just the way
you’d run vim.

Exiting Emacs

You can exit Emacs from the menu via File / Quit, or type the two
keys Control+x followed by Control+c (which we write as C-x C-c). If
you’ve made any changes to a file, you’ll be asked if you want to save
them.

What Emacs Looks Like

The Screen

If you started up Emacs without loading a file, you’ll be looking at
the splash screen 12; this is not something you’ll see in everyday use. 12 The splash screen has some helpful

hints and clickable links (in underlined
cyan); you can click them with the
mouse, or navigate through them with
the Tab key and use Return (Enter) to
execute them.

Otherwise, you’ll be looking at your file.
The default Emacs screen looks pretty conventional, if old-fashioned:

it has a menu bar at the top, a toolbar beneath that, and a scrollbar
on the left (you can ultimately disable any of these; I have, and my
Emacs has the clean retro look of vi); the rest of the screen is com-
pletely devoted to the text of your file, except for the bottom line of
the screen — the echo area — and the line above that — the mode line.

The Mode Line

The Mode Line displays some essential information, in particular the
name of the file you’re editing and whether or not you’ve modified
it, what line you’re on, and what Mode you’re in. It’s completely
customizable and can show lots of other information too, such as the
time, load average, mail availability (biff), and version control status.
See The Mode Line in Detail below.

The Echo Area

The blank line below the mode line is the Echo Area. The Echo Area
is used by Emacs to display short messages, and also for input when
Emacs is prompting you to type something (it may want you to type
yes or no in answer to a question, the name of a file to be edited,
the long name of a command, etc). Unless you are actively using the
mouse, Emacs will typically not use a modal dialog box for this sort
of thing.

https://en.wikipedia.org/wiki/Biff_(Unix)

40 keith waclena

Using Emacs Like It’s Notepad?

Emacs has a reputation of being difficult to use, but in fact anybody
can readily use Emacs out of the box with no instruction13 by using 13 Try that with vim. . .

the menu bar and toolbar. Simply choose File / Open File from the
menu; for common programming languages, you’ll see syntax high-
lighting automatically. Navigate conventionally with the scrollbar,
mouse, and the Page Up, Page Down, and arrow keys. To insert text,
just start typing (Emacs isn’t modal like vim (not by default, any-
way14)); delete text with Delete or Backspace. Finally, choose File / 14 If you like vim’s modal command

framework, Emacs has an extremely
powerful vim emulation called Evil.

Save and then File / Quit from the menu.
This ought to sound extremely familiar.
And pretty boring. You may not be impressed, but you’ll be able

to get a lot of work done right away.
But if you want to use Emacs efficiently and give it a chance to

change your life, you need to learn to control it the way it was origi-
nally designed: via the keyboard.

The enormous Emacs keyboard command set is indeed daunting.
Fortunately, you can learn the keystrokes incrementally, using the
menus for things you don’t yet know how to do. Eventually, you may
stop using the menus entirely; I turned off the menu bar, tool bar and
even the scroll bars years ago to save screen real estate and haven’t
missed them.

Configuring Emacs

Don’t. Yet. Emacs is all about customizing and making it act the
way you want, but in my opinion, you should learn the basics in a
stock, mostly uncustomized Emacs, so that if you have questions or
problems and look up an answer, that answer will apply to you.

In recent years, there’s been something of a cottage industry in
Emacs “starter kits” (such as Prelude, Doom Emacs, Emacs Starter
Kit, Spacemacs, etc15): distributions that give you a heavily pre- 15 Prelude is probably the least intrusive

of these.customized, sexy-looking Emacs to fix what are perceived to be “old-
fashioned defaults” and load and start up everything you could con-
ceivably want. I would avoid these at first for the same reason16. In 16 Though if the “old-fashioned de-

faults” seem unbearable to you, trying a
starter kit is better than giving up!

fact, some of these starter kits change so much about the experience
that large parts of this book will appear to be completely inapplicable
to you, so bear that in mind.

I hope browsing this book will convince you that there’s great
stuff to come, and that therefore you’ll be able to resist immediately
adding a million bits of other people’s configuration tweaks and
third-party packages for just a little while, until you get up to speed
with the basics.

https://www.emacswiki.org/emacs/Evil
https://www.emacswiki.org/emacs/StarterKits
https://github.com/bbatsov/prelude
https://github.com/hlissner/doom-emacs
https://github.com/eschulte/emacs24-starter-kit/
https://github.com/eschulte/emacs24-starter-kit/
https://www.spacemacs.org/

use gnu emacs the plain text computing environment 41

However, there are a few places where I do recommend some
customizations that I think make a significant improvement to the
Emacs experience, even while you’re learning. These will pop up
from time to time, with a margin note that says "Init File", like the

Init Fileone to the right, and are all collected together in an appendix.
My own Emacs is so heavily customized from decades of use that

I can barely function in a stock Emacs! I’m all in favor of customiz-
ing17, but don’t jump in too early. 17 Before I declared Init File Bankruptcy

in 2018, my 70K init file comprised
1,874 lines of Emacs Lisp, so I think it’s
safe to say I’m not against customiza-
tion. (My new init file is about half as
big.)

Figure 3: Init File LOC of Some Experi-
enced Users

In a recent thread on the help-gnu-emacs mailing list18, the ques-

18 See Mailing Lists, below.

tion came up as to what was the size, in lines of code (LOC), of the
typical long-time Emacs user’s Init File. There were about a dozen
answers. The figure shows the result of this impromptu and unsci-
entific poll19; there’s quite a range from the smallest (this book’s Init

19 I’ve included my own current Init
File, my pre-Bankuptcy Init File, and
the starter Init File I recommend in this
book.

File) to the largest; the median size is 2,500 lines.

The Built-In Emacs Tutorial

If you want to dive in immediately and start using Emacs as it ought
to be used, now is a good time to run the built-in learn-by-doing
Emacs tutorial. This is a simply a special text file that explains some
basic Emacs commands and has you try them out, explaining how to
get back to where you were and continue. It’s very effective and you
don’t have to finish it all at once — it’ll remember where you left off
for next time.

If you fire up Emacs without a filename and are looking at the
splash screen, you’ll notice that your cursor is sitting right on a
“clickable” button labeled “Emacs Tutorial” — just hit return or click
the label with the mouse and the tutorial will start up.

If you aren’t looking at the splash screen, you can start (or con-
tinue) the tutorial at any time by typing C-h t (that’s Control+h fol-
lowed by the letter t). If you type instead C-u C-h t Emacs will ask
what national language to use for the tutorial; it’s available in twenty
languages: Brazilian, Portuguese, Chinese, Czech, Dutch, English, Es-
peranto, French, German, Hebrew, Italian, Japanese, Korean, Polish,
Romanian, Russian, Slovak, Slovenian, Spanish, Swedish and Thai.
The default is to use the language of your computing environment, if
available.

https://www.emacswiki.org/emacs/DotEmacsBankruptcy
https://lists.gnu.org/mailman/listinfo/help-gnu-emacs

The Fundamental Emacs Concepts

To really make Emacs work for you requires an appreciation of its
fundamental concepts and how they work together to form a syner-
gistic system.

Functions

Everything you do in Emacs involves the invocation of functions20 20 You could say this is true of any
program, but the Emacs user is always
aware of this, while the non-Emacs user
doesn’t usually think about it at all.

and these functions take arguments and have help and documenta-
tion.

The Keyboard and Key Bindings

Most of the time you invoke these functions with simple keystrokes
— even just typing a single letter into a file invokes a specific func-
tion, as do all the editing operations (like deleting a word), and all
things like opening files or setting a reminder or sending an email.
Most of these functions are associated with keystrokes in a malleable,
context-sensitive hierarchical organization with an (at least aspira-
tional) mnemonic scheme.

Variables

Emacs also contains variables exactly like those of any programming
language, which store a huge variety of data. Most of them are used
only by programmers, but a subset of them are Customizable Variables
(a.k.a. User Options), which you’ll use to configure Emacs to your
liking. These variables aren’t something that you just set up once in a
configuration file: you’ll soon be comfortable setting and inspecting
them on the fly as you’re using Emacs.

Discovery, Help and Completion

No one wants to memorize all the thousands of Emacs key bind-
ings21, including those they might use only weekly or monthly. Less 21 At startup, a fresh Emacs has 1,988

key bindings available.

44 keith waclena

frequently used functions are invoked by name with a powerful and
extensible completion system, unknown functions are discovered
with the Apropos facility, the Help system tells you how to use them,
and the Info hypertext documentation system provides even more
complete discursive documentation (and there’s a clickable link from
the help for any function to its source code, if you really want to
know what’s going on).

Buffers

The text of any file you’re editing is stored in a Buffer. But so is al-
most everything else: documentation, error messages, and the user
interfaces (UIs) to the many Emacs subsystems (file managers, email,
REPLs, etc). This means that to a great extent you can manipulate a
UI using the same commands you use to manipulate the text you’re
editing, which is very powerful and means you have less to learn.

Plain Text

The power of the Buffer is due to the fact that Emacs prioritizes plain
text. Almost everything you see in Emacs is plain text. This doesn’t
mean everything looks plain; the typical Emacs Buffer is colorized,
uses a variety of fonts and possibly character sets, and may include
“clickable”22 buttons, read-only sections, dynamically updating data, 22 When I say “clickable” in this docu-

ment, I don’t specifically mean “with
the mouse” (though you can do that
if you like); rather I mean positioning
your cursor at some location and “acti-
vating” it (typically by hitting Return).
Emacs is full of clickable text locations
that provide links to other locations and
various other actions.

icons and full-size images, and more: but the Buffer still consists of
plain text and the enhancements are applied on top of it.

Windows

Windows are the viewports into your Buffers. You can have an arbi-
trary number of open windows at any time, divided up horizontally
and vertically, and Emacs acts like a tiling window manager to man-
age them for you.

Search

Emacs has a very wide variety of search commands which do more
than simply find the next occurrence of “foo” in your file. You can
search within a Buffer, across multiple Buffers, across files that aren’t
loaded into Emacs yet, and across the web. You can search back in
time by searching version control history. You can search more than
just files: since Emacs subsystems (like calendars, shells, and email)
run in Buffers, you can search their user interfaces and outputs. You
can search all the Emacs documentation, and you can search for

https://en.wikipedia.org/wiki/Tiling_window_manager

use gnu emacs the plain text computing environment 45

things by their names as well as by what they contain. Searches can
take you directly to a match or pop up a Buffer of all the matches
(rather like a page of Google search results), from which you can
jump to the actual locations. All these searches come in a flexible
variety of modes (fixed text, lax spacing, case- and diacritic-folding,
word search, regular expression, and more), and since you’re doing
all this searching in Emacs rather than in a dozen distinct programs,
they share the same options and syntax.

Undo and Redo

While common now, unlimited Undo with redo probably debuted
in Emacs in the early 1980s. You can undo all changes (even back
through file saves) and redo them (undo the undo) all the way for-
ward again, in any combination (you can undo the redo of the undo
of the undo). Undo is smart in that it groups togther tiny changes
(e.g. consecutive single-character insertions) to make undoing less te-
dious, and commands that make big structured changes (like search-
and-replace) arrange for undo to happen in sensible units. There’s an
alternative Undo that works in a tree-structured manner. Most pow-
erful is that you can mark off a specific subregion of the Buffer, and
then undo only the changes made within that region (even if you’ve
since made other changes elsewhere).

Major and Minor Modes

Every Buffer has a Major Mode that’s specialized for some particular
sort of text. The specializations typically affect the visual display of
the text, tweak general-purpose commands to better suit the text, and
provide key bindings for new commands written specifically to work
with that kind of text. The classic case is a Major Mode for editing
the source code of a given programming language — for example,
the mode specializations of python-mode turn Emacs into a Python
IDE.

In addition to Major Modes, we also have Minor Modes. A Major
Mode implements sweeping specializations — you wouldn’t want
to edit HTML in python-mode — but Minor Modes are like mix-ins:
each Minor Mode implements some sort of tweak to behavior or
appearance that’s usually suitable to add to any number of Major
Modes. While any Buffer has exactly one Major Mode, you might
turn on a few dozen Minor Modes as well. Minor Modes can im-
plement additional varieties of navigation, formatting, indentation,
highlighting, templating, diagramming, spellcheck, footnotes, tables,
outlining, text folding, hypertext linking, and much more.

46 keith waclena

My Emacs at the moment has 650 major and minor modes ready
to be enabled.

Customization

One of the hallmarks of Emacs is that virtually every aspect of it
can be customized. Not only can you customize fonts, colors, and
keystrokes but you can customize them all differently in different
parts of Emacs (one font set for Python, another for Haskell). Con-
versely, if you use Emacs for your email and someone mails you a
snippet of Python, you see it, in the email, colorized according to
your preferences. Emacs customization is sometimes thought of as
unfathomable unless you’re a Lisp programmer, but for decades
Emacs has had an interactive forms-based customization system
(called Customize) that lets anybody easily tweak anything.

Programmabililty

But if you are willing to learn a little Lisp (or a lot), you can also
customize Emacs in the programming language that it’s implemented
in, Emacs Lisp (a.k.a. Elisp); having used Emacs since before the
Customize system existed, I still do all my customizations this way.23 23 But I’m trying to get with the pro-

gram: it’s worth it.But with Elisp you can go well beyond mere customization: you
can add completely new features to Emacs that never existed. This
could range from three lines of code to add an idiosyncratic way of
scrolling text (I’ve defined a keystroke to scroll by paragraphs) to
building large software systems that would, in a non-Emacs universe,
be standalone applications. The popular Magit front-end to the Git
version control system comprises 30,000 lines of Elisp code. Gnus,
one of several Emacs mail readers, comprises 117,485 lines! Emacs
itself is about 79% Elisp (the rest being a C core that implements the
Lisp interpreter).

Note that Emacs Lisp isn’t an ad hoc scripting language invented
for use in just one editor. It’s a dialect of the famous programming
language Lisp, which means it has a decades-old well-designed syn-
tax and semantics. It’s a real programming language: in addition
to the multiple books and articles written about Elisp, you can also
learn from the hundreds of books and articles written about Lisp
itself. And, what you learn about Elisp sets you on the way to becom-
ing a real Lisp programmer.

But if you’re not interested in learning Lisp, you can still pro-
gram your Emacs via the incredibly powerful macro system called
Keyboard Macros. You simply start defining a macro, perform a se-
quence of editing actions (e.g., search for a keyword, capitalize it,

https://en.wikipedia.org/wiki/Emacs_Lisp
https://magit.vc/
https://git-scm.com/
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)

use gnu emacs the plain text computing environment 47

delete the next two words, and add another word at the end of the
line), then indicate you’re done. Now a keystroke runs the macro to
repeat those actions. Once you’re convinced it’s working, you can tell
Emacs to repeat the macro until it’s processed everything. Macros
aren’t limited to operating on just one Buffer: you can use any Emacs
commands in defining one, and so can switch Buffers mid-macro at
will.

But Emacs goes well beyond the capabilities of most macro sys-
tems. Since invoking an external shell command is a basic capability
of Emacs, you can do that in your macro and use the result. You
can have many macros defined at once. You can edit your macro
(rather than having to redefine it) if you discover it’s not quite right.
You can save your macro with a name for use in future Emacs ses-
sions. A macro can count (to do things like numbering). It can ask for
confirmation of a step, or allow you to do a localized tweak at each
invocation. All this without being a programmer.

Free Software

Finally, GNU Emacs is free software. This doesn’t mean that you don’t
have to pay for Emacs (though you don’t). It means that the project
is built upon what the Free Software Foundation (FSF) calls the “four
freedoms” — the freedom to (0) run the program, (1) study and
change the program in source code form, (2) redistribute exact copies,
and (3) distribute modified versions. The FSF achieves this via the
frankly amazing invention of the Copyleft license. Without it, Emacs
probably wouldn’t exist as the long-lived, continuously improving
project that it is. And it assures that Emacs can never be taken away
from you by any corporate entity.

https://www.fsf.org/
https://www.gnu.org/copyleft/

The Keyboard and Key Bindings

It makes sense for someone who spends most of their time manipu-
lating text to learn a group of obscure key combinations. It saves time
and increases productivity. Learning to use Emacs properly reminds
me of playing Jazz on the piano. I’ve learnt all those chords and runs
and fills so that I can use them without thinking when I’m improvis-
ing. Likewise, I’ve practised using Emacs key strokes such as M-f, [M-c
] and C-M-<Space> so often I use them without thinking when editing.
I rely on M-/ to complete words, and I can’t do without M-h and C-e to
select and move around text. — Tony Ballantyne (SF and Fantasy Writer)

For Emacs, every keystroke is actually a command (i.e., a func-
tion that does something), even simple keystrokes like the letter A:
printing characters like this are commands to insert themselves into
your text. Non-printing characters (like control characters) are editing
commands, which might move the cursor, scroll some text, delete or
copy text, rename a file, initiate sending an email, etc.

Every command has a long name, which you can look up in the
documentation, like kill-line, delete-backward-char, or self-
insert-command. Many commands are bound to keystrokes for con-
venient editing. We call such a pairing of keystroke and command a
key binding, or binding for short.

The set of all bindings make up the Emacs command set. How-
ever, Emacs is an extensible, customizable editor. This means that:

• bindings can be different when editing different types of text, by
virtue of extensibility

• bindings can be different for different users, by virtue of customiz-
ability

In this document I describe the standard, uncustomized, Emacs
key bindings.

Notation

I use the standard Emacs notation to describe keystrokes:

https://tonyballantyne.com/my-emacs-writing-setup/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Killing-by-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion

50 keith waclena

C-x For any x, the keystroke Control+x.

M-x For any x, the keystroke Meta+x (see below for more details on
Meta keystrokes).

C-M-x For any x, the keystroke Control+Meta+x (which is exactly the
same as Meta+Control+x.).

S-x For any x, the keystroke Shift+x

s-x For any x, the keystroke Super+x24 24 The Super key is the “other modi-
fier” on your keyboard. It’s usually
right next to your Meta key. See The
Troublesome Meta Key.

RET The return key.

SPC The space bar.

ESC The escape key.

Control, Meta, and Super are modifier keys, i.e. they only take effect
when held down simultaneously with another key, exactly like Shift. If
you hold down Shift, Control, or Meta alone, and then simply release
it, Emacs doesn’t even know you’ve done so: you must add a non-
modifier key for the combination to register as a keystroke. You can
combine as many modifier keys together as you have fingers for.

Your keyboard may have even more modifier keys. Emacs is aware
of these other modifiers but doesn’t have any standard bindings that
use them (you can use them for your own purposes though). In fact,
because of arbitrary differences between the keyboards of different
computer manufacturers25, Emacs’s Meta modifier really stands for 25 While these differences have a histor-

ical basis, today they really come down
to Apple versus everybody else. These
differences are utterly beyond Emacs’s
control.

“your preferred non-Control modifier key”.
We don’t typically mention Shift as a modifier key, usually just

writing X instead of S-x, and only use the S- notation occasionally
for disambiguation or emphasis. The S- modifier can of course be
combined with other modifiers (e.g. S-M-x, which is equivalent to
M-X, or S-C-M-5, which is equivalent to C-M-%). Unless you choose
to make a distinction with a custom binding, Emacs almost always
equates a shifted letter in a keystroke with the lowercase version of
the same keystroke: so for example both M-f and M-F (a.k.a. S-M-f)
are equivalent: both invoke forward-word. See Shift Selection for the
only major exception.

Simple Keys

There are 95 different basic printable characters26, and they are all 26 These are basically the characters
on the keys of your keyboard: letters,
digits, and punctuation; see What Is
Text?

bound to self-insert-command so that they insert themselves as
text when typed. For editing commands, Emacs uses all the control
characters: C-a, C-b, etc. But this is only 32 characters, and Emacs has
more than 32 editing commands.27 27 There’s also C-A (a.k.a. Shift+Control+a

or S-C-a) which is a distinct keystroke
(when running in graphical mode),
but to keep things simple the upper-
case control characters are by default
equated to the corresponding lowercase
control characters. The same is true of
the upper-case metacharacters, etc.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Words

use gnu emacs the plain text computing environment 51

To provide access to more key bindings, Emacs uses a Meta key28. 28 What key is the Meta key? On stan-
dard keyboards, it will be either the
Alt key or the Windows key. On Apple
keyboards, it will be either the Option
key or the Command key. See The
Troublesome Meta Key.

This gives us access to keystrokes such as M-a, M-b, etc.
Since Control and Meta are both shift-like modifier keys, what

happens if you hold down both and then type a key? These com-
binations are valid keystrokes as well; they are notated C-M-a, etc.
Because both Control and Meta are modifier keys, C-M-a must nec-
essarily be the same keystroke as M-C-a. For consistency we always
write the former.

Modern keyboards also offer a wealth of non-printing keys such as
the home key, the four arrow keys, and the function keys (F1 and so
on). Emacs also binds commands to many of these. The notation we
use for these keys looks like <home> for the home key, <down> for the
down arrow, <f1> for the first function key, and the like. Emacs can
also distinguish the keys of a numeric keypad (whether NumLock is
on or off.) These keys can all be combined with modifier keys to form
keystrokes like C-M-<down>.

Here are the Emacs spellings of some of the most commonly used
non-printing keys on your keyboard.

<prior> PgUp (Page Up)
<next> Pgdn (Page Down)
<home> Home
<end> End
<left> <right> <up> <down> ← → ↑ ↓ (arrow keys)
<return> Enter or Return (also spelled RET)
<tab> Tab (also spelled TAB)
<backspace> Backspace (translated to DEL)
<delete> Del or Delete
<insert> Insert
<f1> etc F1 function key

Prefix or Compound Keys

The Control and Meta keys plus the printing characters give us 256

possible keystrokes29, or 160 editing commands after eliminating 29 Really more than 256, since Emacs (in
graphical mode) can bind to keys like
Insert, Print Screen, the function keys. . .

the self-inserting characters. But Emacs has many more than 160

commands! To handle this we also use prefix commands. A prefix com-
mand is a keystroke that, when typed, waits for another keystroke
to be typed, making a pair (sequence) of keystrokes bound to one
command. Each prefix command adds another 256 keystrokes that
we can bind commands to. Prefix commands often group together
commands that are somehow related.

The most important prefix commands are:

C-h The help prefix, used for Help commands.

https://en.wikipedia.org/wiki/Modifier_key

52 keith waclena

C-x The extra prefix; this prefix is used mostly for commands that
manipulate files, buffers and windows.

C-c The context-specific prefix. Used for commands that are specific
to particular Modes, so they are free to be used for different com-
mands depending on context. This prefix also reserves a set of
keystrokes specifically for the user to use for their own purposes.
These are the most variable of Emacs commands.

These three prefixes give us another 768 keystrokes, for a total of
928. But Emacs has far more than 928 commands! To handle this, you
can bind one of the subcommands of a prefix command to another
prefix command, like C-x 4 for example, or C-x v, each such binding
yielding potentially another 256 keystrokes. A number of these two-
character prefixes exist, but they’re rather specialized, and don’t
contain a full set of 256 commands (usually there are only a few, and
the prefix is just used for a mnemonic grouping). There are even
three character prefixes, but most people won’t admit to using them.

Prefix Bindings Commands
C-h 40 Help commands
C-x 4 15 Other-Window commands
C-x 5 15 Other-Frame commands
C-x 8 185 Unicode character insertion
C-x @ 6 Keyboard Event commands
C-x RET 11 Coding System commands
C-x a 12 Abbrev commands
C-x n 5 Narrowing commands
C-x r 27 Rectangle, Register, and Bookmark commands
C-x t 20 Tab Bar commands
C-x v 25 Version Control commands
C-x x 7 Buffer commands
M-g 9 Goto commands
M-s 8 Search commands
M-s h 7 Highlight commands
<f1> An alias for C-h
<f2> 4 Two-Column commands
C-x 6 An alias for <f2>

396

Table 1: Some More Prefix Keys

Aborting a Command

What if you start typing a prefix, like C-x, and then decide you didn’t
mean it? Emacs will be sitting there, showing this in the Echo Area:

use gnu emacs the plain text computing environment 53

C-x-

waiting for you to finish. You can abort this partially completed
prefix by typing C-g (keyboard-quit).30 30 C-g is the ASCII Bell or Alert charac-

ter, originally meant to make a teletype
beep, so it sort of makes sense as the
interrupter (especially since Emacs
beeps when you type it).

You can also interrupt a command that’s asking you a question, or
for information (like a file name): if you type the command to open
a file and it’s asking you for the filename, but you’ve changed your
mind, C-g will abort it. It will also interrupt a running command
that you want to now stop. Perhaps you’re editing a file and have
initiated a search-and-replace operation, and after several replace-
ments, you see it was not what you wanted: C-g will interrupt it in
the middle (and, of course, you can then Undo what you’d already
done).

Using Extended Commands

By now we’ve entered a sort of rarefied atmosphere: even the most
hardcore Emacs nerd doesn’t really use all these key bindings. Some
Emacs commands are used very rarely, and, when you need one, it’s
easier to invoke the command by typing its long name directly, using
the Completion system to remind you of the precise name.

There’s one Emacs command that can be used to execute any other
command by typing its long name: M-x (mnemonic: “eXecute” or
“eXtended”). When you type M-x, Emacs prompts you, in the Echo
Area31, for the name of any command (with Completion), even if that 31 Technically, the Minibuffer.

command is bound to one or more keys already, and then executes it.
The prompt looks like:

M-x

and the completion works rather like that of any Unix shell, by typ-
ing an initial part of the command and hitting TAB32. So you might 32 Completion is actually much more

sophisticated than this; see Completion
for details.

type:

M-x backw

and hit TAB at that point; Emacs will partially complete this to:

M-x backward-

and if you then type:

M-x backward-sen

and hit another TAB, it will complete the entire command (because
the prefix is now unambiguous):

M-x backward-sentence

https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting

54 keith waclena

Now you can hit return (RET) to execute the command or if that’s not
what you meant, you can edit what you’ve typed (using any Emacs
editing commands) and keep completing as you go; of course a C-g

will abort the M-x.
If you hit TAB again at the point at which you’ve achieved a partial

completion (at the point of backw or backward- or backward-sen
above), Emacs will pop up a transient buffer showing all the possible
completions (you may discover some surprising and interesting-
sounding commands this way).

This can be a lot of commands! If you type M-x and immediately
hit TAB, Emacs will pop up a buffer showing all the interactive com-
mands that exist at the moment. In a stock Emacs, freshly started,
this will be over 4,000 commands; in my current Emacs session, with
many third-party packages loaded, I get about 8,000.

When you see something like “ M-a (backward-sentence)” in this
book, it means that the keystroke M-a is bound (by default) to the
command backward-sentence (in most Modes, or in the Mode I’m
currently talking about), and so at any moment you can use M-x

backward-sentence or M-a, as you prefer.

Too Many Commands?

How does anyone remember these 928 commands? Simple: you
don’t. Every Emacs user knows a different subset of commands. I’ve
used Emacs for 44 years (starting with the original TECO Emacs),
and I learn useful Emacs commands that are new to me all the time.
Often I notice another Emacs user doing something and I have no
idea how they’ve done it, so I ask and learn some Emacs command
that I just never came across, or never developed as a habit, or once
knew and forgot!

Some Emacs users just learn the most basic commands and are
completely happy. Most users learn the basics and then some ad-
vanced commands that suit their needs. Some users are constantly
learning new commands to speed their editing. A nerdy few progress
to writing their own totally new Emacs commands.

Giving Commands Arguments

Many Emacs commands take arguments, the way a procedure or
function takes arguments in a programming language. Most com-
mands prompt you for their arguments: e.g., a command to read in a
file will prompt you for the filename.

There’s one kind of argument that’s so commonly accepted that
there’s a special way to provide it: a numeric argument. Many com-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Sentences

use gnu emacs the plain text computing environment 55

mands will interpret a numeric argument as a request to repeat
themselves that many times. For example, the C-d (delete-char)
command, which normally deletes one character to the right of the
cursor, will delete N characters if given a numeric argument of N.
It works with M-x commands and self-inserting commands too: try
giving a numeric argument to a printing character, like a hyphen.

To give a command a numeric argument of, say, 12, type C-u 12

before typing the command. If you type very slowly, you’ll see:

C-u 1 2-

in the Echo Area. Then type C-d and you’ll have given delete-char

an argument of 12. You can type any number of digits after C-u.
A leading hyphen (C-u - 1 2) makes a negative argument; a lone
hyphen (C-u -) is the same as an argument of -1 (which makes many
commands “go backwards” in some sense). If you begin typing a
numeric argument and change your mind, you can of course type C-g

to abort it.
Because a numeric argument is given before you type the com-

mand, it’s also called a prefix argument; see “Arguments” in the Emacs
manual.

Since one often isn’t interested in precisely how many times a com-
mand is repeated, there’s a shorthand way to get numeric arguments
of varying magnitudes. C-u by itself, without any subsequent digits,
is equal to a numeric argument of 4. Another C-u multiplies that by 4

more, giving a numeric argument of 16. Another C-u multiplies that
by 4 more, giving a numeric argument of 64, etc. So C-u C-u C-u C-d

would delete the next 64 characters.
C-u can be used before any other command, and for this reason

C-u is called the universal argument. But note that commands aren’t
required to interpret numeric arguments as specifying repetitions. It
depends on what’s appropriate: some commands ignore numeric ar-
guments, some interpret them as Boolean (the presence of a numeric
argument — any numeric argument — as opposed to its absence),
etc. Read the documentation for a command before trying it.

Disabled Commands

Some commands that are especially confusing for novices are disabled
by default. When a command is disabled, invoking it subjects you to
a brief dialog, popping up a window displaying the documentation
for the command, and giving you four choices; for example:

https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Arguments

56 keith waclena

You have typed C-x n n, invoking disabled command narrow-to-region.
It is disabled because new users often find it confusing.
Here’s the first part of its description:

Restrict editing in this buffer to the current region.
The rest of the text becomes temporarily invisible and untouchable
but is not deleted; if you save the buffer in a file, the invisible
text is included in the file. C-x n w makes all visible again.
See also ‘save-restriction’.

Do you want to use this command anyway?

You can now type
y to try it and enable it (no questions if you use it again).
n to cancel--don’t try the command, and it remains disabled.
SPC to try the command just this once, but leave it disabled.
! to try it, and enable all disabled commands for this session only.

If you invoked the command by accident, just hit n. If you’re sure
you know what you’re doing, hit y. Otherwise, SPC is the way to go,
until for any given command you’re comfortable enough with it to
say y.

In this book, I make occasional recommendations to un-disable
certain commands I consider very useful; you can see them all in my
recommended Initial Init File.

Felicity in Key Bindings

I define a felicitous key binding to be one that can be easily repeated,
possibly even auto-repeated by your keyboard. The most felicitous
binding is a single keystroke, like C-f; you can repeat it easily by just
holding down Control and tapping away af f. Even chorded single
keystrokes like C-M-f are maximally felicitous.

Any prefix binding is less so. A two-character prefix binding that
uses the same modifier key in each case, such as C-x C-t, is not too
bad, as you can just keep the modifier held down and quickly tap x

and t. But when the modifiers differ, we have maximum infelicity.
Consider the horrible horizontal scrolling key-binding C-x <

(scroll-left),33 which is effectively C-x S-,. Repeatedly invoking 33 See The Horizontal Scroll Bar.

this command while observing the change in the visible part of the
text in the Window is like playing a particularly complex arpeggiated
piano part: hold down Control, hit x, lift finger from x and lift finger
from Control, hold down Shift, hit <, lift finger from Shift and from <,
and finally repeat.

Since any Emacs command can be bound to more than one keystroke,
in some cases like this, I provide Init File snippets with additional
more felicitous bindings, like my S-C-< for scroll-left, which can
be easily tapped out or auto-repeated.

In most cases, the felicity of key bindings is a minor issue, but
for commands that you tend to repeat, like scrolling commands,

https://www.gnu.org/software/emacs/manual/html_node/emacs/Horizontal-Scrolling

use gnu emacs the plain text computing environment 57

Window-switching commands, and dragging commands, more felici-
tous bindings can make a big difference.

About Mouse Bindings

As mentioned, I don’t use the mouse in Emacs at all (and barely at
all in an external web browser, my only other GUI application), so
I won’t be devoting much space to it, except to say that Emacs fully
supports it.

The mouse is a much more complex user interface device than
the keyboard. Consider the traditional hand-held mouse (ignoring
laptop touchpads for the moment). The minimal mouse has one
button, which, like a key on a keyboard, can be pressed (or clicked) to
generate an event that can be bound to an Emacs command. Also like
a key-press, this button-click can be modified by any of the keyboard
modifier keys, such as Shift, Control, Meta, and the like.

But the complexity of a single mouse click goes way beyond this.
We need to potentially distinguish between a button-press and a
button-release, a simple in-place click versus a drag, motion without
clicking, and double- and triple-clicks (or even more).

But that’s not all: many mice have more than one button: mice
on Unix systems traditionally have three buttons, and two- and five-
button mice are common. Unlike non-modifier keyboard keys, mul-
tiple mouse buttons can be chorded: that is, pressing or clicking two
or more buttons simultaneously counts as a completely different
button!34 Many mice have a scroll wheel, which acts as another, more 34 Rob Pike’s text editor Acme, from

the Plan 9 operating system, is almost
unusable without a 3-button mouse,
since it relies so heavily on mouse
chords.

complex button, which may also tilt. Laptop touchpads add more
complexity. And the keyboard modifier keys can be mixed into all of
this.

Emacs defines an abstraction of all this complexity, defines a set of
default global mouse bindings, and of course allows you to modify or
add mouse bindings yourself.35 35 My personal configuration completely

disables all mouse bindings when I’m
using a laptop, because it’s far too
common for me to generate mouse
events accidentally when the heel of
my palm brushes against the touchpad,
which drives me crazy.

All that said, I’ll just summarize the most basic default global
mouse bindings; you can get complete details in the manual.

• clicking button 1 moves Point to the location of the click

• dragging with button 1 selects text

• clicking button 2 moves Point and then pastes the contents of the
system clipboard36 36 Under X on a Unix machine, this

actually yanks the primary selection.
• clicking button 3 copies the text between Point and the clicked

location to the kill ring

https://en.wikipedia.org/wiki/Computer_mouse
https://en.wikipedia.org/wiki/Touchpad
https://www.gnu.org/software/emacs/manual/html_node/emacs/Mouse-Commands

Files, Buffers and Windows in Brief

Figure 4: Emacs Data Structures

Legend:

+ One or more
1 Exactly one
1? One or none

Emacs has three data structures (actually four) that are intimately
related, and essential to appreciate.

File A file is the actual file on disk. You are never directly editing
the data in this file. Rather, you read a copy into Emacs to initial-
ize a Buffer, edit the Buffer’s copy, and write the contents of the
Buffer back out to the file to save it. A file of course contains text:
characters in some character set, say, Unicode37. 37 Emacs is also happy to edit non-

text (binary) files, like images and
executable files, and has special modes
for this.

Buffer A Buffer is the internal data structure that holds the text you
actually edit. Emacs can have any number of Buffers at any mo-
ment. Many Buffers, but by no means all, are associated with a
file. Buffers have names; a Buffer that has been initialized from a
file is almost always named for that file, and we say that the Buffer
is visiting the file. This means, in particular, that when you save
the Buffer, it’s saved to the proper file. At any given instant ex-
actly one Buffer is selected or current (even if several are visible):
this is the Buffer that your focused cursor is in, and this is where
most of the commands you type take effect (including self-insert
commands). Buffers can be deleted at will; deleting a Buffer in no
way deletes any file on disk, and if you have any unsaved editing
changes, Emacs won’t let you delete the Buffer (unless you insist).
See Buffers for details.

Window A Window is a view into a Buffer. You can split any Win-
dow, horizontally or vertically, into as many Windows as you like
(or at least have room for), each viewing a different Buffer. It’s also

60 keith waclena

possible to have several Windows viewing different portions of
the same Buffer. The relationship between Buffers and Windows is
transient: typically, many Buffers have no Window viewing them
at any moment and in general, Buffers outnumber Windows by a
large margin.

Windows can be created and deleted at will; deleting a Window
in no way deletes the Buffer associated with the Window. Each
Window has its own Mode Line, but there’s still only the one Echo
Area. See Windows for details.

Don’t confuse Emacs Windows with windows on your desktop!
Emacs had multiple Windows two years before Graphical User In-
terfaces were commercially available. Once GUI desktops became
common and used the term “window” for their own purposes,
Emacs added support for these “desktop windows”, but needed to
use a new name for them: Frame.

Frame A Frame is a “desktop window” that is treated as a separate
entity under a windowing system like X. When Emacs starts up,
it creates one Frame for you, but you can have as many as you
like. Each Frame can hold several Emacs Windows, and, in fact,
has it’s own Echo Area (I lied above), but all Buffers are shared in
common across all Frames. I won’t be discussing Frames much, as
I rarely want more than one. But see Frames for details.

Basic File Concepts and Commands

The most common things you do with files are load them and save
them.

C-x C-f (find-file) This is the main command used to read a file
into a Buffer for editing and is what the menu item File / Open
File does. It’s actually rather subtle. When you execute this com-
mand, it prompts you for the name of the file (with Completion).
Then it checks to see if you’re already editing that file in some
Buffer; if you are, it simply switches to that Buffer and doesn’t ac-
tually read in the file from disk again. If you’re not, a new Buffer
is created, named for the file, and initialized with the contents
of the file. To create a brand new file, just type a nonexistent file
name; you’ll get an empty Buffer that will create a new file when
saved38. In any case, the current Window is switched to view this 38 But not before: if you visit a new,

non-existent file, insert text into it,
but then kill the buffer (after reassur-
ing Emacs that you want to discard
your edits), the file will not have been
created,

Buffer.

C-x C-s (save-buffer) This is the main command used to save a
file, or, more accurately, to write a copy of the current Buffer out

https://en.wikipedia.org/wiki/X_Window_System
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands

use gnu emacs the plain text computing environment 61

to the disk, overwriting the Buffer’s file, and handling backup
versions.

C-x s (save-some-buffers) This command allows you to save all
your Buffers that are visiting files and have modifications, query-
ing you for each one and offering several options for each (save
it, don’t save it, peek at it first then maybe save it, just save all of
them without asking, etc).39 39 Emacs does save-some-buffers

implicitly when you exit, as well.

See Files for more information.

Basic Commands to Manipulate Buffers

The most common things you do with Buffers, which you can for
now think of as opened files, are switch between them, list them (in
case you’ve forgotten which ones you’ve opened), and occasionally
clean them up. But to paraphrase Philidor, “The Buffers are the soul
of Emacs” and in short order you’ll be doing a lot more with them.

C-x b (switch-to-buffer) Prompts for a Buffer name (with comple-
tion) and switches the Buffer of the current Window to that Buffer.
Doesn’t change your Window configuration (if you had three Win-
dows before, you still have three afterwards). This command will
also create a new empty Buffer if you type a new name; this new
Buffer will not be visiting any file, no matter what you name it
(until you save it, at which point it will be visiting the just-created
file).

C-x C-b (list-buffers) Pops up a new Window which lists all your
Buffers, showing for each the name, state (modified or not), size in
bytes, the Buffer’s major mode, and the file the Buffer is visiting (if
any). This is an interactive Buffer, meaning that, within it, you’re in
a special mode that allows you to manipulate Buffers: select them,
delete them, save them, search a subset of them, etc.

C-x k (kill-buffer) Prompts for a Buffer name (with completion)
and removes the entire data structure for that Buffer from Emacs.
If the Buffer is modified and is visiting a file, you’ll be given an op-
portunity to save it. Note that killing a Buffer in no way removes
or deletes the associated file (nor does it delete the Window; that
Window will simply start displaying some other Buffer). kill-
buffer is happy to delete a modified non-file Buffer without any
warning however, so don’t keep important notes in Buffers like
this (such as the *scratch* Buffer). (Emacs has better ways of
note-taking anyway.)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://en.wikipedia.org/wiki/Fran%C3%A7ois-Andr%C3%A9_Danican_Philidor
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/List-Buffers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer

62 keith waclena

C-x C-q (read-only-mode) Make a Buffer read-only (so that at-
tempts to modify it are treated as errors), or make it read-write if
it was read-only. If you open a file that you don’t have permission
to modify, Emacs sets the Buffer to read-only, to prevent you from
wasting your time editing it when you won’t be able to (directly)
save it. This command lets you have your way with it.

See Buffers for more information.

Basic Commands to Manipulate Windows

Just like the windows on your desktop, the most common things you
do with Emacs Windows are create them, delete them, resize them,
switch between them (i.e., change the focus), and scroll around in
them. Emacs manages its Windows in a tiling manner, like one of
those tiling window managers that are all the rage these days.

See Windows for more information.

Create a New Window

To create a new Window, you have to pick an existing Window
(there’s always at least one!) and split it in two. You can split it ver-
tically (which means you now have less vertical space in the original
Window) or horizontally.

C-x 2 (split-window-below) Splits the current Window in two,
vertically (into two Windows, one below the other). This creates
a new Window, but not a new Buffer: the same Buffer will now
be viewed in the two Windows. This allows you to view two dis-
tant parts of the same Buffer simultaneously, by moving around
independently in the two Windows. Of course you can switch to
a different Buffer in one of these two Windows with, say, C-x b

(switch-to-buffer) or C-x C-f (find-file). Mnemonic: “2 Win-
dows where there was 1”.

C-x 3 (split-window-right) Splits the current Window in two,
horizontally (into two Windows, side by side). This also creates
only a new Window, and not a new Buffer: the same Buffer will
now be viewed in the two Windows. Mnemonic: “slightly different
from C-x 2”.

Delete a Window

C-x 0 (delete-window) Deletes just the current Window, resizing the
other Windows in the current Frame appropriately. This does not

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Buffer
https://en.wikipedia.org/wiki/Tiling_window_manager
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window

use gnu emacs the plain text computing environment 63

delete the Buffer (nor file) associated with the Window. Mnemonic:
“zero this Window”.

C-x 1 (delete-other-windows) Deletes all other Windows in the
Frame except the current one, making one Window in the Frame.
Does not delete the Buffers (or files) associated with the other
Windows. Mnemonic: “show me just this 1 Window”.

Resize Windows

Since Emacs tiles Windows, you can’t resize just one Window40. If 40 Though you can have Emacs or your
window manager resize the entire
frame.

you want to make it bigger, you have to steal real estate from some
other Window, and if you want to make it smaller, you have to do-
nate real estate.

I think the default Emacs key bindings for resizing Windows are
very awkward; see “Change Window” in the Emacs manual. This is
easily fixed with some custom bindings; I’ll give the ones I’ve used
for years later.

In graphical mode, you can use the mouse: just point the mouse
at the Mode Line that’s between the two Windows whose mutual
sizes you want to adjust. Point anywhere in the mode line as long it’s
not on top of any text or icon, and then click and drag with the left
mouse button.

Side-by-side Windows (as created by C-x 3 (split-window-
right)) don’t have a Mode Line between them, of course, but there is
a vertical dividing line that you can likewise use, with the mouse, for
resizing.

Switch Windows

The simplest way to switch Windows is to cycle through all of them
with C-x o, stopping at the one you wanted to get to. I rarely do
it this way and will discuss better, less tedious methods later. In
graphical mode, you can use the mouse to switch Windows: just click
anywhere in the desired Window with the left mouse button.

C-x o (other-window) Switch to the other Window, making it the
active Window. Repeated invocation of this command moves
through all the Windows in the Frame, left to right and top to bot-
tom, and then circles around again. Which Window is the “other
window”? See Switching Windows.

Scroll Within a Window

Scrolling horizontally is only necessary if you have a combination
of tall skinny Windows and long lines; we’ll ignore that for now.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window

64 keith waclena

But it’s very common for a file to have many more lines than will fit
vertically in a Window.

You can of course scroll with the mouse and the scrollbar (or the
scroll wheel) if you don’t mind taking your hands off the keyboard.

C-v (scroll-up) The basic command to scroll forward (towards the
end of the file) by one screenful. (Is this up or down? Depends
on your point of view.) By default Emacs leaves you two lines
of context from the previous screen. Mnemonic: “View more of
the Buffer” or “The V points toward the text you want to see”.
scroll-up is also bound to the <PageDown> key41. 41 This seems wrong — up is down,

down is up: have we gone through the
looking glass? — but it’s just because
the words describing scrolling are
inherently ambiguous.

M-v (scroll-down) Just like C-v, but scrolls backwards. Mnemonic:
“C-v goes forward so M-v goes the other way”. scroll-down is also
bound to the <PageUp> key.

You can also directly scroll a Window other than the one you’re
in. This is just a shorthand for switching to the Window you want
to scroll, scrolling it, and switching back to the Window you came
from. If you have a lot of Windows in your Frame, that’s exactly what
you’ll have to do, but for the common case of two Windows, we have
a simple command:

C-M-v (scroll-other-window) Just like C-v, but scrolls the other
Window. This works with more than two Windows, in which case
the other Window is the Window that C-x o would switch to. You
can give it a negative argument to make it scroll backwards.

There’s more about scrolling to come.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Scrolling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Scrolling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window

Selecting Text: the Point, the Mark, and the Region

Selecting a range of text is fundamental to editing. It enables you
to act upon the text: delete it, copy it, modify it, change how it’s
displayed (highlight or colorize it, change its font or size), investigate
it (count its words or lines), search for other occurrences of it, focus
on it (search or undo within it, narrow to it so that’s all you can see),
feed it to something outside of Emacs.

The Emacs term for a range of selected text is the Region (“Using
Region” in the Emacs manual): it’s simply the text in your Buffer
between the Point and the Mark.

The Point

Point (“Point” in the Emacs manual) is the Emacs term for what we’ve
been loosely calling your cursor up to now; the cursor always shows
the position of Point in your Buffer. Point is where text is inserted
when you type, and where most editing operations happen. When
you “move” in a Buffer, you’re simply adjusting the location of Point.

Point is really just a number: the offset, in characters, from the be-
ginning of the Buffer, of the character after Point. You typically don’t
care about this number as such unless you’re writing Elisp, but if you
want to know the value of Point, C-x = (what-cursor-position) will
report it in the echo area (along with some other interesting informa-
tion42). 42 C-u C-x = will report a lot of interest-

ing info.Point always identifies a location between two characters. By de-
fault, Emacs displays, in the current Window, a cursor at Point in the
form of a solid box. The box seems to be on top of a character, but
Point is before that character. (You could ask Emacs to instead dis-
play the cursor as a thin vertical line, which would make the position
of point as between two characters easier to understand but perhaps
harder to spot.)

Every Window has a distinct Point which is always visible in that
Window. This means that if you visit a file and split the Window into
two, you can have Point in a different position in each Window, so
you can look at distant parts of the file at the same time.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Using-Region
https://www.gnu.org/software/emacs/manual/html_node/emacs/Using-Region
https://www.gnu.org/software/emacs/manual/html_node/emacs/Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info

66 keith waclena

The Mark

The Mark (“Setting Mark” in the Emacs manual) is a sort of addi-
tional, invisible, Point. A Buffer has only one Mark43, and every 43 But see the Mark Ring.

Buffer’s is distinct. However, unlike Point, there’s no Mark in a
Buffer until you set one (explicitly or implicitly).

The main purpose of the Mark is to determine one end of the
Region, Point being the other.

You set the Mark (at the same location as Point) with a special
command, C-SPC (set-mark-command); C-@ is an old synonym. Then,
as you move Point, the Mark stays where you set it and whatever is
between the two forms the Region.

The Region

Figure 5: The Active Region (Mark at
the beginning)

The Region is the text between Point and Mark. If the Mark exists
in a Buffer, so does the Region (because Point always exists). The Re-
gion can be of any size: a few words, many paragraphs, the next 253

characters. If you set the Mark and don’t move Point, the Region is of
size zero. (Yes, an empty Region is useful.) If you set the Mark at the
end of the Buffer, and move Point to the beginning of the Buffer, then
the Region encompasses the entire Buffer.

In fact, the Region is the same regardless of whether Point comes
first in the Buffer or Mark does; it makes no difference, just do what’s
convenient.

This scheme predates the commercial availability of the mouse,
and provides a keyboard-driven equivalent of sweeping out text
with the mouse. In fact, if you click mouse button 1 (usually the left
button) at a position in the Buffer, and drag the mouse pointer in any
direction, and then let go of the button, Emacs sets the Mark at the
place where you clicked, and the Point at the place where you let go
— another way to set the region.

When you explicitly set the Mark with C-SPC (or the mouse), the
Mark is activated, and the Region is suddenly colored differently so
you can visualize it (see Figure 5). If the color becomes distracting, a
C-g will deactivate the Region, as will most commands that operate

https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark

use gnu emacs the plain text computing environment 67

on the Region after they’re done with it (so the Active Region is
typically transient: set it — color! — act on it — color gone).

But remember, the Region still exists (because there’s a Mark)
even if inactive and invisible: you can still use it44. If at any time 44 Though a few commands will make

a distinction between an active and an
inactive region, to add utility.

you’re not sure of its extent, C-x C-x (exchange-point-and-mark)
will reactivate the Region (and hence colorize it); it also swaps Point
and Mark, which is handy if you want to fine-tune the extent of the
Region with additional motion commands, or if you want to get to,
or just peek at, the other end (the Region might be big enough that
you can’t see both ends at the same time).

Once you’ve got a Region, you can do stuff to it. What kind of
stuff? Delete it; copy it; duplicate it; capitalize or otherwise change
the case of it; search-and-replace or undo within it; narrow your
view of the Buffer to it; do a web search for it; treat it as a rectangle;
write it out to a different file; colorize it; comment it out, count the
words, characters, and lines within it; pipe it through a shell com-
mand. There are hundreds, nay, thousands, of Emacs commands that
operate on the Region, and you can readily make your own.

In a typical GUI editor like Microsoft Word or Google Docs,
you spend much of your time sweeping out or selecting text with
the mouse and then activating a menu or toolbar item; the Emacs
equivalent is to set the Region and then execute a command with a
keystroke. In Emacs, you can likewise use the mouse and a menu,
but you can also do everything with the keyboard, and in addition to
setting the Region by setting the Mark and explicitly moving, you can
set it implicitly via textual object commands, search commands, and
more.

So now you know how to define the Region: let’s do stuff to it.

C-w (kill-region) Kills the Region. (You can yank it back else-
where.) Other editors call this operation cut. Mnemonic: wipe the
region.

M-w (kill-ring-save) Saves the Region without removing it from
the Buffer (so you can yank a copy back elsewhere). Other edi-
tors call this operation copy. Mnemonic: a “bigger” wipe (which
includes an immediate “paste”).

C-x C-i (indent-rigidly) Rigidly indents (or dedents) the Region
using the arrow keys; C-u 12 C-x C-i indents the region exactly
12 characters, without using the arrow keys.

C-x C-l (downcase-region) Convert the entire Region to lowercase.
This command is disabled by default.

C-x C-u (upcase-region) Convert the entire Region to uppercase.
This command is disabled by default.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Kill-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Kill-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case

68 keith waclena

M-q (fill-region) Fills, i.e., justifies with a ragged right margin, all
the paragraphs within the Region; with a prefix argument, right
justify the paragraphs.

There are hundreds more commands that act on the Region, and
the Region is fundamental to the way cutting and pasting is done in
Emacs.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Fill-Commands

Cutting, Copying, and Pasting

Cutting, copying, and pasting to and from the clipboard — the fun-
damental editing operations — in most applications exist as three
keyboard shortcuts, known as Control+x, Control+c and Control+v
respectively, called CUA45. 45 IBM codified this as its Common User

Access (CUA) standard; in Mac OS, you
use Command+ instead of Control+.

Emacs, of course, uses different terminology and key bindings —
how can it not, predating the CUA “standard” by close to ten years?

CUA Menu Item Key Mac OS Emacs Command Key
Cut Control+x Command+x kill-region C-w

Copy Control+c Command+c kill-ring-save M-w

Paste Control+v Command+v yank C-y

Select All Control+a Command+a mark-whole-buffer C-x h

Emacs calls cutting, “killing”; and it calls pasting, “yanking”. So
select your text (by setting the Region), and then use the Emacs
keystrokes in the table above, and things will work mostly as you
expect.

Aside from the keystrokes, this is directly analogous to the way
cutting and pasting is done everywhere else. If you really can’t
face the idea of learning these four keystrokes, you can enable CUA
Mode, which will let you use the keystrokes you’re used to.

Now we’re done with this chapter, right? Feel free to skip ahead to
the next chapter to continue your Emacs exploration, but be sure to
come back here later for a little more info.

Welcome back!

It’s time for some tough love. Emacs cut-and-paste goes significantly
beyond that of most applications, but, I have to admit, at the cost
of a significant learning curve. The advanced features are probably
the most complicated part of beginner-level Emacs knowledge. The
reason is just that it’s all very abstract and tenuous, and you have to
picture invisible things in your head.

What are these advanced features?

70 keith waclena

1. Commands to precisely select (i.e. set the region around) a whole
range of textual objects: words, symbols, lines, sentences, para-
graphs, and more. We cover these in the next chapter. There are
commands to directly select and kill (cut) these objects.

2. A history of previously killed and copied text. The Mac OS and
Windows clipboards only hold one item—the last piece of text you
killed or copied. Emacs remembers your 60 most recent items, and
there’s no limit—you can increase it if you like.46 46 You need a third-party application

from the App Store to embiggen the
Mac OS clipboard. As of Windows 10,
Microsoft users now have a clipboard
history; it’s not enabled by default:
when enabled, the clipboard history
supports up to 25 items.

Emacs calls its “clipboard” the Kill Ring, and it’s an invisible (al-
beit inspectable) data structure that you normally have to picture in
your mind’s eye as you use and change it.

With the addition of one more command, new in version 28 of
Emacs, your suite of cutting and pasting commands looks like this:

Action Key Emacs Command
Cut C-w kill-region

Copy M-w kill-ring-save

Paste C-y yank

Paste from History M-y yank-pop

C-y yanks (“pastes”) your most recent kill (or copy), but you can
get back any of your last 60 kills by instead using M-y. It presents all
your kills using the Completion system: just choose the text you want
to yank, as in Figure 6.

Figure 6: Yanking Back in Time

This function works best with an Incremental Narrowing Frame-
work like Ivy or Selectrum (Ivy is shown in Figure 6).

Until you read Yanking Older Kills, you shouldn’t invoke this com-
mand immediately after C-y: it will have a different effect. If you
need to use M-y right after a C-y, just precede it with C-g (keyboard-
quit).

https://github.com/abo-abo/swiper
https://github.com/raxod502/selectrum
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting

use gnu emacs the plain text computing environment 71

The Kill Ring

When you kill the Region with C-w, Emacs adds the killed text to a
data structure called the Kill Ring, which holds the last several kills.
This allows you to get older kills back. When you yank with C-y, the
most recent kill from the Kill Ring is inserted into the Buffer at Point;
it’s not removed or popped off the Kill Ring, so if you yank again,
you get another copy.

The Kill Ring is really a linear list, and killing with C-w feels like
pushing onto a stack; but the commands that deal with it actually
treat it as a circular structure, so we call it a ring.

The Kill Ring is a global data structure, shared by all Buffers: this
is so that you can use the Kill Ring to move text from one Buffer to
another: kill some text in Buffer A, switch to Buffer B and yank it:
you’ve moved the text.

What about copying text? Clearly, you can copy and paste by doing
C-w to kill, immediately yank it back to where it was with C-y, and
then move elsewhere and yank again (your text is still at the front
because yanking doesn’t pop the Kill Ring). That’s C-w C-y (move
somewhere) C-y.

M-w is a shortcut for C-w C-y, so we usually use that for copying:
M-w (move somewhere) C-y.

Yanking Older Kills (“Clipboard History”)

Here’s how yanking older kills worked in olden times (before v28’s
new M-y (yank-pop) command). Unless you’re a connoisseur of
Emacs history (this all still works. . .), I suggest you skip ahead!

Suppose we kill the word “foo” in some Buffer. This pushes it onto
the front of the Kill Ring (who knows what else is behind it):

foo . . .
↑

The arrow points to what C-y will yank, by default the latest kill.
Then we do some more work, and kill the word “bar” somewhere
else. Now the Kill Ring looks like this:

bar foo . . .
↑

Now we want to paste the “foo” somewhere47. How do we get at it? 47 You would probably just retype “foo”
— but imagine larger chunks of text
here: whole lines or paragraphs.

We yank with C-y and “bar” (what the arrow points to) is inserted.
But now we immediately type M-y (yank-pop). When invoked imme-
diately after C-y, it moves the yank-pointer back one step:

bar foo . . .
↑

https://www.gnu.org/software/emacs/manual/html_node/emacs/Earlier-Kills
https://www.gnu.org/software/emacs/manual/html_node/emacs/Earlier-Kills

72 keith waclena

and simultaneously replaces the just-yanked “bar” at Point with “foo”.
If we immediately type M-y again, it would move the yank-pointer
back one more step, and replace “foo” with whatever is next oldest in
the Kill Ring.

You don’t really need to picture the Kill Ring. When you want
something from it, just type C-y and then if you think, “no, older”
type M-y, and if you think, “no, older”, type another M-y and so on.

The only trick here is that you have to type M-y immediately after a
C-y, or after a M-y: if you do anything in between — moving, typing,
popping up the calendar — M-y will do the wonderful new thing of
offering up older kills for Completion; if your Emacs is older then
v28, it will complain with “Previous command was not a yank”.

If you actually type 60 M-y’s, you would then cycle around to the
front of the Kill Ring again!

Suppose the Kill Ring looks like this:

echo delta charlie bravo alpha . . .
↑

Let’s look at the results of some yanks (each of these examples is an
alternative to any of the others):

• C-y would yank “echo”

• instead, C-y M-y would yank “delta”

• or, C-y M-y M-y would yank “charlie”

• or, C-y M-y M-y C-y would yank “charliecharlie” (C-y always
yanks from the pointer)

Note that C-y takes a numeric argument (positive or negative),
so that C-u 3 C-y in our example is the same as C-y M-y M-y. M-y
works the same way.

What if you type several M-y’s and decide you don’t want what
you end up with? Usually you just undo them, but note that this
undoes the changes to your Buffer, but doesn’t undo the motion of
the yank pointer. If you do C-y M-y M-y, yielding “charlie”, you can
undo, yielding “delta”. But your next C-y will yank “charlie” again,
since that’s where you left the yank pointer.

When you’ve got your yanked text (whether acquired by one C-y

or a chain of M-y’s, or the new Completion-based M-y), the Mark is
set for you at the beginning of the restored kill, to make it easy for
you to jump there (with C-x C-x (exchange-point-and-mark); see
also the Mark Ring) — remember that you may have just yanked
back a very large chunk of text, so the beginning could be a long way
away.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark

use gnu emacs the plain text computing environment 73

Undoing a Yank

I stole a function from the EmacsWiki that I call undo-yank (originally
named yank-pop-forwards), that lets you reverse direction in the
middle of a sequence of M-y’s, in case you overshoot; this actually
moves the yank pointer, so you can think of it as an undo for yanks.

Init File
;; thanks to an anonymous EmacsWiki coder

(defun undo-yank (arg)

"Undo the yank you just did. Really, adjust just-yanked text

like \\[yank-pop] does, but in the opposite direction."

(interactive "p")

(yank-pop (- arg)))

(global-set-key (kbd "C-M-Y") 'undo-yank)

I Can’t Picture This!

Ever feel that ’C-y M-y M-y M-y . . . ’ is not a great way of trying to find
that piece of text you know you killed a while back? — Colin Walters

Emacs’s abstract approach to the Kill Ring (an invisible data structure
with an invisible yank-pointer), which may seem a mite austere, is
very fast and efficient once you get used to it. But you might occa-
sionally prefer a sort of WYSIWYG alternative, that lets you browse
the Kill Ring interactively: see its entire contents and search it too.
The new functionality of M-y command does this for you; an alterna-
tive is Colin Walters’ third party package browse-kill-ring.

Other Ways to Set the Region

So far, we’ve been talking about killing (or copying) the Region: as
if you were always going to be sweeping out text, mouse-like (even
if with the keyboard). But really, it’s much more common to work
in terms of textual objects — in other words, kill a word or a line or
a paragraph without bothering to sweep out its boundaries. We’ll
discuss textual objects in detail in the next chapter.

Appending to a Kill

Since the Kill Ring is a sequence of kills, you might think to use it
to accumulate several separate chunks of text that you want to yank
back elsewhere. Kill the first piece of text, move to the next and kill
it; repeat several times and you’ve now got everything you want, in
several chunks at the front of the Kill Ring.

https://www.emacswiki.org/emacs/KillingAndYanking

74 keith waclena

But when it comes time to yank all these chunks back, you’ll have
to do a bit of a dance with a combination of C-y’s and M-y’s in a
somewhat surprising order (because the kills are accumulated on the
Kill Ring backwards).

What you want to do instead is append to a single kill at the front
of the Kill Ring, with C-M-w (append-next-kill). So you kill the first
piece of text, move to the second, but now type C-M-w before killing
it with C-w; this causes the second piece to be appended to the text of
the front kill, instead of added as a new kill as usual. Think of C-M-w
C-w as a single append to the kill command.

If the three pieces of text are “alpha”, “beta”, and “gamma”, the
process looks like:

• move to “alpha”, set the Region, and C-w:

alpha . . .
↑

• move to “beta”, set the Region, and C-M-w C-w:

alphabeta . . .
↑

• move to “gamma”, set the Region, and C-M-w C-w:

alphabetagamma . . .
↑

Now you can move elsewhere, and with one C-y, you yank back
“alphabetagamma”.

Obviously, C-M-w works the same with M-w, if you want to leave the
original text in place.

C-M-w is a pretty low-level tool; Emacs has better ways of ap-
proaching the task of accumulating scattered chunks of text that
don’t use the Kill Ring at all.

Appending to a Buffer

When you want to collect several chunks of text from various loca-
tions, the best way to do it is to append the chunks to a Buffer.

Move to the first piece of text you want to collect—let’s say the
word “alpha”—and set the Region, but don’t bother to kill or copy;
instead say M-x append-to-buffer-with-newline. You’ll be prompted
for a Buffer name which will collect all the pieces of text you’re gath-
ering; just make up any name you like! If you’re collecting Greek
letters, you could call the Buffer “greek” or “g”. Your text will be

https://www.gnu.org/software/emacs/manual/html_node/emacs/Appending-Kills
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 75

appended to your Buffer (which will be created as needed) with a
newline added at the end.48 48 There’s also the command M-x

append-to-buffer, which works ex-
actly the same way, except it doesn’t
add a newline, so all your chunks will
be mashed together.

Now find your “beta”. M-x append-to-buffer-with-newline again
and use the same Buffer name. Repeat for “gamma” and as many
other things you’re looking to collect.

When you’re done, go to the place you want to “yank” your collec-
tion, and say M-x insert-buffer: the entire contents of your accumu-
lation Buffer is inserted at Point.

This scheme has several advantages over the Kill Ring for ambi-
tious text rearrangement.

• You can do your collecting and appending over a span of hours (or
even days).

• It allows you to use the Kill Ring as you like in between accumula-
tions.

• You can freely use several different collection Buffers for different
sorts of text, and intermix your accumulations.

• The accumulation Buffer is just a Buffer like any other, so you can
switch to it at any point to fix it up, or save it to a file; you also
aren’t required to use M-x insert-buffer to get your text; you can
kill or copy the text you’ve accumulated to extract what you’ve
collected in any order or combination.

See Mass Line Deletion for another solution, and “Accumulating
Text” in the Emacs manual for more information.

The Clipboard

The Kill Ring is a data structure to which only Emacs has access.
But every time you kill or copy text to the Kill Ring — with any of
the many commands that do so, not just C-w and M-w — Emacs also
copies that text to the system clipboard. This is the data structure that
all your other non-Emacs applications paste from (with the CUA
keystroke Control+v, probably). So this gives you a simple way pass-
ing text to them.

It also works in the other direction: if the contents of the system
clipboard are newer than the Kill Ring — because you did a cut or
copy in a non-Emacs application — then C-y instead inserts the clip-
board text — not the first item in the Kill Ring.

There are several configuration variables to control exactly how
Emacs and the clipboard49 interoperate; see “Clipboard” in the Emacs 49 And, on Unix machines, the more

complex X Selections mechanism.manual.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Accumulating-Text
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Accumulating-Text
https://www.gnu.org/software/emacs/manual/html_node/emacs/Accumulating-Text
https://www.gnu.org/software/emacs/manual/html_node/emacs/Clipboard

76 keith waclena

CUA Mode

If you’re a long-time Windows user and the Control+x, Control+c
and Control+v keystrokes are so thoroughly wired into your fingers
that you just can’t get used to C-w, M-w, and C-y, don’t give up hope.
Just say M-x cua-mode and Emacs will let you use the commands
you’re used to. In order not to completely clobber the hundreds of
key bindings on the C-x and C-c prefixes, the CUA bindings are only
operative when the Region is active (colorized). There are several
subtleties and extra features, so see “CUA Bindings” in the Emacs
manual for the complete story.

If you like cua-mode, you can turn it on by default in your init file
with this line of code:

(cua-mode +1)

https://www.gnu.org/software/emacs/manual/html_node/emacs/CUA-Bindings
https://www.gnu.org/software/emacs/manual/html_node/emacs/CUA-Bindings

Editing with Textual Objects

Editing in general consists of inserting text, either by typing it or
acquiring it from some existing source; and then, over time, moving
from one spot to another in order to make changes (i.e. transform it).

In Emacs, both moving around and making changes are done
largely via textual objects — things like characters, words, lines, sen-
tences, and such — and you can:

• move in terms of them, and by moving, optionally:

• select them, and after selecting them,

• copy them,

• kill them, or

• transform them.

For each such object, there is a motion command that moves for-
ward over it and another that moves backward (you can also think
of this as moving to the end and to the beginning). All these motion
commands interpret numeric arguments as repetitions, so with an
argument of N, you can move over N objects with one command.

But of course, if you simply set the mark before moving, then
when you’ve moved, you’ve also selected text — that is, you’ve put the
Region around whatever you’ve moved over. Having selected, you
can now immediately copy or kill the text, or transform it.

Suppose Point is the | in this line — you’re in the middle of the
word “telecommunications” — and you want to kill that word:

the intermediary of some telecommu|nications program, where the

To do so, you can move to the beginning of the word, set the mark,
move to the end, and kill: that’s four keystrokes:

1 M-b backward-word

2 C-SPC set-mark-command

3 M-f forward-word

4 C-w kill-region

78 keith waclena

Besides being completely general (killing a sentence just requires
you to substitute sentence-motion commands for the word-motion
commands, for example) this technique means that all you need to
learn to use textual objects are the motion commands. But most of
the textual objects also have a special command that marks, i.e. selects,
them, which saves you a keystroke, so we could also kill “telecommu-
nications” with just:

1 M-b backward-word

2 M-@ mark-word

3 C-w kill-region

In addition, most of the objects also define a command to kill
them, which can save you another keystroke:

1 M-b backward-word

2 M-d kill-word

Or if you happen to already be at the beginning of the word, it’s
just one keystroke:

1 M-d kill-word

You can choose how much mental effort to put into learning these
additional commands, knowing that you can always achieve your
goal in the 4-step manner. But most expert Emacs users eventually
learn all of these special commands: even micro-optimizations pay
off for things you do frequently.

Shift Selection

If you execute any of the motion commands while also holding the
Shift key, you can short-cut the selection process via Shift Selection.
Consider M-f (forward-word). If you instead use S-M-f, the Mark is
automatically set at Point, and then you move forward one word: so
the word is automatically selected. S-M-f is essentially C-SPC M-f. In
our example:

1 M-b backward-word

2 C-SPC set-mark-command

3 M-f forward-word

4 C-w kill-region

we can instead do:

1 M-b backward-word

2 S-M-f forward-word (shifted)
4 C-w kill-region

https://www.gnu.org/software/emacs/manual/html_node/emacs/Shift-Selection
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words

use gnu emacs the plain text computing environment 79

The same thing is true for motion backwards, and for any of the
other textual object motion commands. Just add the Shift.

And, if you type a shifted motion command, and immediately
repeat it (while holding down the Shift key), the selection is enlarged
until you finally issue a non-shifted-motion command. So if you say
S-M-f S-M-f S-M-f you will have set the Region around three words.

You can mix different objects too: S-M-f S-C-n S-C-f is also legiti-
mate.

Transposing and Dragging Objects

A special case is transposing (or swapping) two objects: that is, put
Point between two objects (say, sentences) and swap them — the
left hand sentence is now the right hand sentence and vice versa.
One single command replaces a more complicated pattern of killing,
moving, and yanking.

For example, here in line 0 Point (|) is between “one” and “two”.
If we transpose-words with M-t, we get the result in line 1:

0 one | two three four five

1 two one | three four five

2 two three one | four five

Note that Point has moved forward, or if you prefer, it remains after
“one”. This means that another M-t will result in line 2. So several
transpose commands in a row can be chained together. You might
think of this as dragging “one” to the right.

Most of the transpose commands react to a numeric argument
of N by transposing the object to the left of Point with the one N
objects to the right. This means that an argument of 1 is the same as
no argument (on line 0 above, the word “two” is one word away from
the left-hand word “one”).

But if we say C-u 2 M-t, we get this result, because “three” is two
words to the right of “one”:

0 one | two three four five

1 two three | one four five

Personally I think it’s easier to chain several transpose commands to
achieve the equivalent effect, but your brain may work differently.

A negative argument transposes in the opposite direction (back-
wards, rather than forwards). In addition, a numeric argument of 0
(which would otherwise not do anything!) is interpreted specially:
it swaps the object containing or after Mark with the object contain-
ing or after Point, no matter how far apart they are! This is a long-
distance transposition, with no chaining or counting required. Here

80 keith waclena

in line 0 ^ indicates Mark (in “one”), and | Point (in “eleven”); we
say C-u 0 M-t:

0 ^one two three four five six seven eight nine ten ele|ven twelve thirteen

1 ele|ven two three four five six seven eight nine ten ^one twelve thirteen

(Frankly I’ve never internalized this and always just Kill, move, and
Yank in this use case.)

The exact definition of what makes up a given textual object is of-
ten customizable and may vary slightly from mode to mode. This is
useful because it means that you can use the same motion commands
and yet have them automatically customized for different types of
text.

Here’s the complete list of standard Emacs textual objects, with
their backward- and forward-motion, marking, killing, and transpos-
ing key bindings:

Object Backward Forward Mark Kill Transpose
Character C-b, ← C-f, → C-d C-t

Word M-b M-f M-@ M-d M-t

Horizontal Line C-a C-e C-k

Vertical Line C-p, ↑ C-n, ↓ C-x C-t

Sentence M-a M-e M-x ... M-k M-x ...

Paragraph M-{ M-} M-h M-h C-w M-x ...

Sexp C-M-b C-M-f C-M-@ C-M-k C-M-t

Defun C-M-a C-M-e C-M-h C-M-h C-w

Page C-x [C-x] C-x C-p C-x C-p C-w

Buffer M-< M-> C-x h C-x h C-w

N.B.: in these charts, M-x ... means that the obvious command ex-
ists but isn’t, by default, bound to a key — that is, M-x mark-end-of-

sentence, M-x transpose-sentences, and M-x transpose-paragraphs.

Characters, Words, and Lines

Object Backward Forward Mark Kill Transpose
Character C-b, ← C-f, → C-d C-t

Word M-b M-f M-@ M-d M-t

Horizontal Line C-a C-e C-k

Vertical Line C-p, ↑ C-n, ↓ C-x C-t

Characters

https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose

use gnu emacs the plain text computing environment 81

Object Backward Forward Mark Delete Transpose
(left, right)

Character C-b, ← C-f, → DEL, C-d C-t

The character is the smallest, the atomic, textual object.

C-b (backward-char) Moves backward (to the left) over a character.
This is mostly the same thing that the left-arrow (<left> (left-
char)) does (but there are subtle differences in the context of bi-
directional text).

C-f (forward-char) Moves forward (to the right) over a character.
Same deal with right-arrow (<right> (right-char)).

The f for forward and b for backward mnemonic will recur.

DEL (delete-backward-char) Deletes the character to the left of
Point; note that this is not a Kill and the deleted character doesn’t
go on the Kill Ring (because at one keystroke per character, it’s
quicker to retype it than to kill and yank it).

C-d (delete-char) Deletes the character to the right of Point; also
not a Kill.

C-t (transpose-chars) Swap the characters around Point; at the
very end of the line, swap the two previous characters.

Words

Object Backward Forward Mark Kill Transpose
(left, right)

Word M-b M-f M-@ M-DEL, M-d M-t

M-f (forward-word) Moves forward over a word.

M-b (backward-word) Moves backward over a word.

Note the f/b mnemonic. Also, as another mnemonic, note that M-f
is like a “bigger” version of C-f.

M-@ (mark-word) Sets the Mark at the end of the current word; im-
mediately repeating this command moves the Mark to the end of
the next word, enlarging the Region by one word (this is generally
the way all marking commands work).

M-d (kill-word) Kills text forward from Point to the end of the
word.

M-DEL (backward-kill-word) Kills text backward to the beginning of
the word.

M-t (transpose-words) Swap the words around Point.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose

82 keith waclena

Lines

Object Backward Forward Mark Kill Transpose
Horizontal Line C-a C-e C-k

Vertical Line C-p, ↑ C-n, ↓ C-x C-t

Lines can be considered vertically or horizontally. Horizontal first.

C-a (move-beginning-of-line) Moves to the beginning of the cur-
rent line.

C-e (move-end-of-line) Moves to the end of the current line.

A for the beginning of the alphabet, E for “end”.
Strangely, there’s no command to set the region around the entire

current line (though it’s very easy to write one!).

C-k (kill-line) Kills from Point to the end of the current line, not
including the newline unless the line is blank. Thus, if you’re at
the beginning of a non-blank line it takes two C-k’s to kill the
whole line and close up the whitespace.

C-u 0 C-k (kill-line) Kills to the beginning of the current line, not
including the newline.

Now let’s consider lines vertically.

C-p (previous-line) Moves up to the previous line; also on ↑ (<up>).

C-n (next-line) Moves down to the next line; also on ↓ (<down>).

C-x C-t (transpose-lines) Swap the line containing Point and the
previous line, leaving Point after both (allowing chaining).

When moving vertically by lines, the cursor tries to stay in the
same column, but if the target line is too short, the cursor will be at
the end of the line instead: Emacs doesn’t automatically insert spaces
at the ends of lines (end of line is unambiguous)50. 50 Except in certain special modes.

It doesn’t seem too intuitive to kill lines vertically by analogy with
C-n and C-p; I know of no such commands.

Prose Objects: Sentences and Paragraphs

Object Backward Forward Mark Kill Transpose
Sentence M-a M-e M-x ... M-k M-x ...

Paragraph M-{ M-} M-h M-h C-w M-x ...

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Killing-by-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Killing-by-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose

use gnu emacs the plain text computing environment 83

Sentences

When you’re editing prose, motion by sentences and paragraphs is
very convenient. Note that, by default, for the purposes of motion,
sentences need to end with two spaces after their terminal punctua-
tion (period, exclamation point, or question mark). This has become
something of a cause célèbre lately, but don’t worry, you can change
sentence-ending to only require one space by customizing sentence-

end-double-space.

M-a (backward-sentence) Moves to the beginning of the current
sentence.

M-e (forward-sentence) Moves to the end of the current sentence.

Note the mnemonic relationship between C-a / M-a and C-e / M-e.
Again the Meta version is for a “bigger” object.

M-x mark-end-of-sentence Sets Mark at the end of the current
sentence; this command doesn’t have a default key binding (but
you could give it one).

M-k (kill-sentence) Kill the text from Point to the end of the sen-
tence.

C-u -1 M-k (kill-sentence) Kill the text from Point to the begin-
ning of the sentence.

Paragraphs

You can similarly move by paragraphs — but what is a paragraph
exactly? It depends on the Major Mode and you can tweak the def-
inition yourself51, but most commonly, paragraphs are delimited by 51 M-x customize-group RET

paragraphs.blank lines.

M-{ (backward-paragraph) Move to the beginning of the current
paragraph.

M-} (forward-paragraph) Move to the end of the current paragraph.

M-h (mark-paragraph) Sets the Region around the entire current
paragraph; unlike the marking commands for smaller objects, in
addition to setting the Mark at the end of the object, this one also
moves Point to the beginning (this turns out to be much more
useful for large objects).

M-x kill-paragraph Kill the text from Point to the end of the para-
graph.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Sentences
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sentences
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sentences
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sentences
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Paragraphs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Paragraphs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Paragraphs

84 keith waclena

Larger Objects: Pages and Buffers

Object Backward Forward Mark Kill Transpose
Page C-x [C-x] C-x C-p C-x C-p C-w

Buffer M-< M-> C-x h C-x h C-w

Pages are separated by form feed characters (C-l — that’s L, not the
digit 1), just as lines are separated by newline characters. This used
to be a common concept back when Emacs was young; when print-
ing, you had to manually indicate where a page break should occur,
causing the printer to skip to the top of the next page (or “form”),
and to do this you would insert a form feed character into your text.

Since form feeds count as whitespace in most programming and
markup languages, pages are still a useful idea, and Emacs has sev-
eral commands that do things in terms of them. You can insert a
form feed into your file by typing C-q C-l (see Quoted Insert).

So while it’s rare now to use a form feed to actually force a new
page when printing52, it’s handy to be able to separate a large file 52 Because now we tend to print format-

ted documents (e.g., PDFs) rather than
plain text files.

into “pages” which are really just bigger sections than paragraphs. A
typical organization in a file of source code is to precede each section
header comment with a form feed, and then you can navigate by
these logical sections via C-x [and C-x].

Here’s what it looks like in a file of my Emacs Lisp source code
(Elisp comments start with one or more semicolons, and a form feed
character displays as ^L):

^L

;;; parsing and unparsing

That ^L is not two characters, as you can clearly see if you move your
cursor across it one character at a time: it just looks like it.

C-x [(backward-page) Moves to the beginning of the current page.

C-x] (forward-page) Moves to the end of the current page.

C-x C-p (mark-page) Sets the Region around the entire current page;
unlike most marking commands, in addition to setting the Mark at
the end of the object, this one also moves Point to the beginning.

Finally, it’s useful to be able to jump directly to the beginning or
the end of the buffer without having to scroll.

M-< (beginning-of-buffer) Moves to the beginning of the buffer.

M-> (end-of-buffer) Moves to the end of the buffer.

https://en.wikipedia.org/wiki/Page_break
https://www.gnu.org/software/emacs/manual/html_node/emacs/Pages
https://www.gnu.org/software/emacs/manual/html_node/emacs/Pages
https://www.gnu.org/software/emacs/manual/html_node/emacs/Pages
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 85

Mnemonic: the beginning of the buffer is a location that’s less-than
any other location, and vice versa.

C-x h (mark-whole-buffer) Move Point to the beginning of the
buffer and set Mark at the end of the buffer.

M-x mark-beginning-of-buffer Set Mark at the beginning of the
buffer, without moving Point,

M-x mark-end-of-buffer Set Mark at the end of the buffer, without
moving Point.

Code Objects: Balanced Parentheses and Function Definitions

Object Backward Forward Mark Kill Transpose
Sexp C-M-b C-M-f C-M-@ C-M-k C-M-t

Defun C-M-a C-M-e C-M-h C-M-h C-w

An /S-expression53/ (“sexp” for short) is the name, in Lisp, for atoms 53 S-expression stands for “symbolic
expression”.(symbols, numbers, and quoted strings) and the balanced paren-

theses that enclose them, recursively. In Emacs, this useful notion is
available everywhere; it’s especially useful for editing programming
languages, but even in prose it’s very useful to be able to move over,
copy, or kill a parenthesized phrase. The characters that Emacs recog-
nizes as parens are usually regular parentheses (aka round brackets),
square brackets, and braces (aka curly brackets), but it depends on
the Major Mode (for some languages, angle brackets (i.e. < and >)
may act as parens too).

But sexps are more than just balanced parens. A symbol (roughly,
a word) that doesn’t contain any parens also counts as a sexp, as does
a number. In most programming language modes, quoted strings are
sexps (using either single or double quotes, depending on the syntax
of the language). A sexp is any of those, or a parenthesized sequence
of them, recursively.

These commands may seem confusing at first, but for editing most
programming languages they’re fantastic. Not only do they move
you around quickly and accurately, but they help spot syntax errors
while you’re editing, because they’ll beep at you if your parens or
quotes are unbalanced.

C-M-b (backward-sexp) Moves backward over the next sexp. If your
cursor is just to the right of an opening paren, C-M-b will beep,
because there’s no sexp to the left to move over: you have to move
up.

C-M-f (forward-sexp) Moves forward over the next sexp. Same error
if your cursor is just to the left of a closing paren.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects
https://en.wikipedia.org/wiki/S-expression
https://www.gnu.org/software/emacs/manual/html_node/emacs/Expressions
https://www.gnu.org/software/emacs/manual/html_node/emacs/Expressions

86 keith waclena

Here’s an example of linear movement via sexps. The location of
Point is shown by |, and we move forward with C-M-f each time.
After three C-M-f’s Point is after “Emacs” in line 3, because each of
the first three words count as symbols and thus are sexps. But the
next C-M-f leaps over the entire parenthesized expression in line 4.

0. |In 1976, Emacs (in its original TECO form) was invented.

1. In| 1976, Emacs (in its original TECO form) was invented.

2. In 1976|, Emacs (in its original TECO form) was invented.

3. In 1976, Emacs| (in its original TECO form) was invented.

4. In 1976, Emacs (in its original TECO form)| was invented.

C-M-u (backward-up-list) Move backward up one level of parens.
In other words, move to the opening paren of the parens contain-
ing the cursor, skipping over balanced sexps.

C-M-d (down-list) Move down one level of parens. In other words,
move to the inside of the next opening paren, skipping over inter-
vening sexps.

Let’s move up in nested parentheses with C-M-u. On line 0, Point
is in front of the word “Lisp”. We type C-M-u and on line 1, Point is
now in front of the nested parentheses. One more C-M-u and Point
moves in front of the leftmost paren.

0. (in its original TECO form (which preceded the |Lisp implementation))

1. (in its original TECO form |(which preceded the Lisp implementation))

2. |(in its original TECO form (which preceded the Lisp implementation))

Nested parentheticals may be poor prose style, but they’re extremely
common in source code in almost any programming language.

Now let’s move down with C-M-d. On line 0, Point is on the re-
turn type of this C function definition; on line 1, after C-M-d, Point is
inside the formal parameter list:

0. |void synctex_updater_free(synctex_updater_t updater) {

1. void synctex_updater_free(|synctex_updater_t updater) {

C-M-@ (mark-sexp) Set Mark at the end of this sexp.

C-M-k (kill-sexp) Kills the sexp after Point.

Since function defintions are such an important unit of text in
programming languages, whether they’re called defuns, subroutines,
procedures, procs, or whatever, they also count as textual objects.
Like the sexp commands, these commands work appropriately in
most programming language modes. Emacs calls this generic notion
of function or procedure defun, again after Lisp.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-by-Parens
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-by-Parens
https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects
https://www.gnu.org/software/emacs/manual/html_node/emacs/Expressions

use gnu emacs the plain text computing environment 87

C-M-a (move-beginning-of-defun) Move to the beginning of the
current function definition.

C-M-e (end-of-defun) Move to the end of the current function defi-
nition.

C-M-h (mark-defun) Sets the Mark at the end of the current defun.

Note the mnemonic analogy with lines and sentences.

Extending Kills

If you kill several times in a row, with any combination of kill com-
mands, but without any non-kill commands in between, these kills are
appended together in one entry on the Kill Ring — there’s no need to
precede the kills with C-M-w (append-next-kill). For example you
can kill the next six words as a unit with M-d M-d M-d M-d M-d M-d,
move elsewhere and yank back all six (with their intervening whites-
pace) with one C-y. C-u 6 M-d would be equivalent. You can kill a
block of lines with a sequence of several C-k’s, or you could kill the
next sentence and the following two words with M-k C-u 2 M-d (note
that the numeric argument C-u 2 doesn’t break up the sequence of
kills, because C-u 2 is part of the following M-d command).

Adjusting the Region

After setting the Region around one or more textual objects, whether
by setting the Mark and moving, or Shift Selection, or by object-
specific mark commands, you can fine-tune the Region by lengthen-
ing or shortening it at either end with any other motion commands
— perhaps you selected a paragraph with M-h but you don’t want the
blank line at the front of it, or selected a sentence and want to add
the two words at the beginning of the following sentence. Just move
Point in any manner. If you want to adjust the other end, where Mark
is, use C-x C-x (exchange-point-and-mark): now Point is where the
Mark was and you can adjust that end.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-by-Defuns
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-by-Defuns
https://www.gnu.org/software/emacs/manual/html_node/emacs/Appending-Kills
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark

Other Ways to Move Around

The textual object motion commands covered in the last chapter are
probably the most important means of motion in Emacs. But there
are several other ways to move around.

Move by Searching

You can exploit your knowledge of the contents of your text by using
Emacs’s many search capabilities to move around. If you want move
to where you were discussing Ursula K. Le Guin, just search for her
name.

Follow a Breadcrumb Trail (The Mark Ring)

We learned in Selecting Text that there’s only one Mark in any Buffer.
This is strictly true, but there’s an additional data structure in each
Buffer called the Mark Ring (see Info) that holds a history of previous
Mark locations54. 54 By default, the last 16 locations; you

can change this value by Customizing
mark-ring-max.

Whenever you set the Region, whether with C-SPC (set-mark-
command) or a mouse selection, or implicitly with textual object mark
commands (like M-h (mark-paragraph)), the Mark’s current location
is pushed onto the Mark Ring. The Mark is also set for you automat-
ically at places where you’ve done “significant” things, like changing
text, moving a long way away in one big jump (there being many
ways to do this), the spot where you issued a search command, and
the like55, and these locations also go onto the Mark Ring. 55 You may notice the message “Mark

set” or “Mark saved where search
started” in the Echo Area when this
“convenience Mark” is set automati-
cally.

Thus a breadcrumb trail of Marks is left for you to find your way
back, Theseus-like, to where you’ve been, and provides a quick way
to get back to these previous locations. The way to jump back to
the previous Mark location is to give C-SPC (set-mark-command)
an argument, so C-u C-SPC. It also rotates the Mark Ring, so that
a repeated, uninterrupted sequence of C-u C-SPC commands will
take you back in time through your previous Mark locations. The
Mark Ring is a circular structure, so when you hit the end, you’ll

https://www.gnu.org/software/emacs/manual/html_node/emacs/Mark-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Paragraphs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark

90 keith waclena

circle round to the most recent Mark location again. You’ll notice the
analogies to the operation of the Kill Ring.

It’s a common idiom to set the Mark explicitly as a breadcrumb
to jump back to, rather than as part of selecting some text. If you set
the Mark, which activates the Region, and immediately set it again
in the same spot, the Region is deactivated; this is nice for using the
Mark to record your position — you’re not really setting the Region,
so why be distracted by the color of the active region? So remember
C-SPC C-SPC as the breadcrumb-dropping command.

The Global Mark Ring

In addition to each Buffer’s specific Mark Ring, there’s a also a
Global Mark Ring: this records a history of your locations in previ-
ous Buffers. So if you want to jump to the last place you were in the
previous Buffer you were in, just use C-x C-SPC (pop-global-mark).
The setting of these global marks is automatic: whenever you switch
Buffers, Emacs pushes the Buffer you just left (and your location
there) onto the Global Mark Ring. You can cycle through this ring,
too.

Move Via Your History of Changes

Perhaps the most surprising way of moving is by Undoing; if you
recently made a change to your text (possibly just by adding some
more) and then moved elsewhere, it’s pretty common to want to
go back to where you made that change, and the easiest way to get
there is to just Undo it, because wherever you may be now, an Undo
pops you right back to the last change in that Buffer. You can use this
trick even if you don’t want to Undo your change — because you can
instantly restore it by a Redo.

Obviously this trick gets much trickier if you want to move back to
where you were, say, three changes ago: three Undos gets you to the
right spot, but assuming you liked your changes, if you Redo them
you’re now back where you came from! The third-party packages
goto-last-change and goto-chg solve the problem by going to the
Undo locations without actually Undoing!

Mode-specific Motion

Various Major Modes may implement special ways of moving. Per-
haps the most obvious is moving by identifiers (names) in program-
ming language modes: you can move from a use of a function or
variable to the definition, for example, or move through all the uses

https://www.gnu.org/software/emacs/manual/html_node/emacs/Global-Mark-Ring

use gnu emacs the plain text computing environment 91

of an identifier. This typically works across all the files in a defined
project. Some languages have a bespoke way of handling this via
the language server protocol (LSP)56, but Emacs also supports various 56 I program in OCaml and use an LSP

called Merlin for this.language-agnostic approaches, such as the Xref subsystem.

Move by Scrolling

Sometimes, rather than moving pointedly to get to a precise location,
you just want to scroll through your text to get an overview and stop
at the spot that catches your fancy; scrolling is covered in the chapter
on Windows.

Goto Commands

Most of the textual-object motion commands can be thought of as
moving relatively: when you move forward by one word (sentence,
paragraph, . . .) you’re moving relative to the location of Point.

But occasionally it’s useful to move to an absolute position (though
much less often than one might think). The most common type of
absolute motion is to move to a specific line by its line number. For
example, according to M-x what-line, this line as I’m writing it is line
1,497. If I move elsewhere, I can come right back here by jumping to
line 1,497!

Of course, since I’m editing, in a few minutes that line probably
isn’t line 1,497 anymore, and I probably won’t remember that num-
ber for more than a few seconds, and anyway, if I wanted to come
back here why don’t I just use the Mark Ring or search?

I think most people who use line numbers as motion targets have
line numbers turned on. Emacs doesn’t display line numbers by

Figure 7: linum-mode in action.

default, though it does show the current line number in the mode
line, but you can toggle the traditional left-margin display of line
numbers on and off with M-x linum-mode, or arrange for them to
always be on in every Buffer57. To me they just waste screen real 57 Put (global-display-line-numbers-

mode) in your init file.estate.
But what if you’re compiling a program in your terminal and it

reports a syntax error on line 563? Well, you should be compiling
that program in Emacs with M-x compile, and then you can jump to
that error with a keystroke, with no need to type any line number;
see Compiling Code.

https://en.wikipedia.org/wiki/Language_Server_Protocol
https://ocaml.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation

92 keith waclena

However, it’s true that you do occasionally get a line number
foisted upon you in an unpredictable manner — say, from a stack
trace when a program blows up, or from some log file. When you do,
M-g g (goto-line) will prompt you for the number and jump there.

Much more rarely, you’ll have a byte (character) offset from the
beginning of some file; M-g c (goto-char) will take you there.

Finally, M-g TAB (move-to-column) is what you need for absolute
positioning on the other axis: it moves to the given character offset
from the left margin. There are lots of subtleties to this command —
like, how do you count tab characters in the line, or multibyte (say,
Unicode) characters? — but hopefully you’ll never need it; I’d never
used it before I had to write this paragraph! See the documentation
for details.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

Variables and Symbols

Usually the programming language in which a program is imple-
mented is only of incidental interest to the user of the program. But
all Emacs users know that it’s implemented in Emacs Lisp, because
the Lisp interpreter is always there, running Emacs and interacting
with you to a degree that’s unheard of in most programs.

One of the most important parts of the running Lisp interpreter is
the collection of symbols that it contains: 41,667 at startup. A symbol
— which is a name like what-line or compile or kill-paragraph —
can hold a Command, in which case the symbol serves as the name
of the Command58, which you can use to execute the Command via 58 Or a function.

M-x (execute-extended-command) or by which it can be attached to a
keystroke via a key binding.

A symbol can also be a variable—initially Emacs has 15,121 of
them— and have a value. We say the value is bound to the variable.
Most of these variables are used only by programmers in the imple-
mentation of the functions they write for you to use, but a subset of
them—2,927—are Customizable Variables (a.k.a. User Options), which
you can use to configure Emacs to your liking.

In this chapter we’ll be talking mostly about User Options. They’re
fundamentally the same as plain old variables, but distinguished by
being variables that you’re expected to want to customize, and they
have additional features to assist in this. But you can customize al-
most any variable if you want to, and some lazy Elisp programmers59 59 Like me until very recently, he said,

shame-facedly.simply might not bother to mark their variables as customizable. So
I’ll generally just use the term “variable” here.

What Are These Variables For?

Emacs is famously malleable and customizable: you can make it
work and look exactly the way you want, and this is mostly achieved
through variables. Do you not like the red color of the squiggles
under your spelling errors? That color60 is specified in the variable 60 More accurately, that face. . .

flyspell-incorrect, so you can change it.
Do you wish Emacs wouldn’t beep at you when an error occurs?

https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://www.gnu.org/software/emacs/manual/html_node/emacs/M-x

94 keith waclena

The visible-bell variable lets you change that.
Throughout this book, I make some recommendations for tweaks

to some variables, and give examples of others that you might want
to change.

Types of Variable Values

A variable can hold any kind of Lisp value, and there are several
types: truth values (corresponding to true / false or on / off: called
Booleans by programmers), numbers, text (called strings by program-
mers), functions, and, perhaps most importantly, lists, which are
sequences or collections of values of any types61. Also, and I don’t 61 I’m simplifying here: Emacs Lisp

has more types than these, and also
makes some subtle distinctions that I’m
glossing over.

want to blow your mind here, but a variable (which is a symbol,
you’ll recall) can also hold. . . a symbol.

Let’s look at some examples of real Emacs variables and the (typi-
cal) types of values they hold.

Variable Name Default Value Type
visible-bell t Boolean
delete-by-moving-to-trash nil Boolean
kill-ring-max 60 number
report-emacs-bug-address "bug-gnu-emacs@gnu.org" string
tool-bar-position top symbol
split-window-preferred-function split-window-sensibly function
image-types (svg png gif tiff jpeg xpm xbm pbm) list

Table 2: Examples of variables

In Table ??, we see that visible-bell is on (because t is the Elisp
Boolean true value) while delete-by-moving-to-trash is off (because
nil is the Boolean false value).

kill-ring-max determines the size of the Kill Ring.
report-emacs-bug-address is the email address for Emacs bug

reports such as those generated by report-emacs-bug, and as such
must be a string.

tool-bar-position specifies where the tool bar should be dis-
played, and must be one of the four symbols top, bottom, left, or
right.62 62 These are pure symbols, not variables,

simply because they only need to
exist as names and don’t actually hold
values.

split-window-preferred-function is a variable that holds a func-
tion that is actually called to split a window; split-window-sensibly
is a symbol that names a function suitable for this purpose. Variables
that hold a function are typically set to the symbol that names the
function.

Finally, image-types is a list—of symbols, in this case, but Elisp
lists can hold any types or combination of types (including nested
lists).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Checklist

use gnu emacs the plain text computing environment 95

Inspecting Variables

You can take a look at the current value of any Emacs variable at any
time. The usual way is to use the Help facility via C-h v (describe-
variable) or the more ecumenical C-h o (describe-symbol); see Help
for a Variable for details.

Changing the Value of a Variable

As the name implies, you can also change the value that’s bound to a
variable. There are three times at which you might do this:

1. when Emacs starts up, via your Init File or the Customize Facility;

2. explicitly and interactively, while you are using Emacs;

3. whenever you visit a given file.

For cases 1 and 2, it’s best to use Customize, because it provides
documentation about how the variable works, guides you though
the possibilities, prevents you from making common mistakes, and
allows you to revert your changes or save them for future sessions.
It’s equally good for making settings for your startup configuration,
for setting a value just for this session, or just to try out a new value
for a while. You’ll know you can use Customize when C-h v says,
“You can customize this variable.”

Note, however, that Customize only works for User Options. If
you want to change a variable that hasn’t been defined as such, you’ll
have to learn a little about Elisp.

Buffer-Local Variables

Variables can have different values in different buffers. For example,
you might want to indent lines differently when you’re writing a
Python program than when you’re writing prose. We call these buffer-
local variables. They start out with a default value, but if you change
the value of such a variable, the change only applies in the current
buffer.63 63 There’s a way to change the default

value too, but only via Elisp.You can’t change the local value of a buffer-local variable with
Customize; you either do it via Elisp in your Init File (if you want the
change in every Emacs session; see Hooks below), or else you use M-x

set-variable to do it just for now, in the current buffer.
To set a variable with set-variable, you need to know the type

of value the variable expects; that means you need to read its doc-
umentation with C-h v. You also need to know enough about Elisp
to understand the syntax of the different types. There’s a difference

https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Examining

96 keith waclena

between the number 256 and a string containing the three digits 2, 5,
and 6.

If you say M-x set-variable, Emacs will prompt you for the name
of a variable. You might enter:64 64 I can’t imagine why you would want

to change this variable, but let’s ignore
that.Set variable: report-emacs-bug-address

The next prompt would be:65 65 The word “globally” means the
variable is not buffer-local; if it were, it
would say “(buffer-local)” instead.Set report-emacs-bug-address globally to value:

According to the documentation, this value needs to be a string; if
you were to enter:

Set report-emacs-bug-address globally to value: myself@example.com

you would get a type error:

user-error: Value ‘myself@example.com’ does not match type string of report-emacs-bug-address

Table 3 provides a cheat-sheet for entering values of the major data
types in the correct syntax; see “Init Syntax” in the Emacs manual
for details, and also for how to set variables in your Init File. But
remember, prefer M-x customize-variable whenever possible.

Type Example Another Example
Boolean (true or on) t

Boolean (false or off) nil

number 256 1

string “256” “myself@example.com”
symbol flyspell-incorrect top

function (same as symbol) find-file set-variable

list (1 4 12) ("/tmp")

Table 3: Elisp Data Type Syntax

The syntax of Booleans is very simple: the true value is spelled t

and the false value, nil.66 I could give you other examples of the true 66 These weird names are enshrined in
the depths of Lisp history.and of the false values, but it would require a little too much expla-

nation.
Numbers are represented as a sequence of base 10 digits, like 256,

possibly including a decimal point, as in 3.141593. There’s a special
syntax to enter numbers in other bases.

Strings are enclosed in double-quotes; there are some tricks here,
like how to include a double-quote in a string—""" is no good, be-
cause the enclosed (second) " terminates the string: you have to es-
cape it with a backslash like this: "\"". There are also other “escapes”
so that you can include control characters and such; see “String
Type” in the Elisp manual.

Symbols look rather like strings without quotes (they don’t need
quotes because they can’t contain spaces); you can just type their
names. As discussed above, a function is typically represented by
the symbol that names it (though for the Elisp programmer, there are
other possibilities) and so uses the syntax of symbols.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-Syntax
https://www.gnu.org/software/emacs/manual/html_node/elisp/nil-and-t
https://www.gnu.org/software/emacs/manual/html_node/elisp/nil-and-t
https://www.gnu.org/software/emacs/manual/html_node/elisp/String-Type
https://www.gnu.org/software/emacs/manual/html_node/elisp/String-Type

use gnu emacs the plain text computing environment 97

Lists are simply zero or more space-separated instances of any
types enclosed in parentheses. The empty list is (). There’s no prob-
lem nesting lists: this list contains two values, a string followed by a
list of three numbers: ("foo" (1 2 3)).

This should be enough syntax for you to enter values at the set-

variable prompt.

File- and Directory-Local Variables

Elisp also lets you initialize buffer-local variables inside arbitrary
files: these are called file-local variables. When you visit such a file, the
variables are automatically given their declared values in the buffer
that the file initializes. This is especially useful as a way to set the
Major Mode in which the file should be edited—see Mode via File-
Local Variable—but you can set additional variables too (subject to
Security limitations).

You can also set buffer-local variables on a per-directory basis;
this is very convenient when you would otherwise be repeatedly
setting (or forgetting to set. . .) the same file-local variables every time
you add a file to a directory; see “Directory Variables” in the Emacs
manual.

Hooks

An essential part of Emacs’s customizability is provided by hook vari-
ables. They cleverly solve the problem of how you can customize, in
your Init File, dynamic things that haven’t happened yet, like all future
buffers in some particular Major Mode, or an Emacs application that
you haven’t started yet (like Eww (the web browser) or Dired the file
manager), or a third-party application like Magit that doesn’t even
ship with Emacs.

A hook is nothing more than an ordinary variable that’s used in
a conventional way by Emacs programmers. The value of a hook is
a list of functions, such that at some documented and distinguished
time—like when you visit a file in, say, python-mode, or pull up a web
page in Eww, or start playing an audio file in EMMS—the functions
are executed, or run.

Most hooks have a default value of the empty list: when the hook
is run, nothing happens! But the important point is that you can add
your choice of functions to the hook to cause magical things to occur.
For example, you might add the function flyspell-prog-mode to
the python-mode-hook variable to enable spell-checking of Python
comments. Now you’ll get this spell-checking in every Python file
that you visit.

Minor Modes are a very common class of functions to add to

https://www.gnu.org/software/emacs/manual/html_node/emacs/Directory-Variables
https://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling

98 keith waclena

hooks, as is a function that changes the value of one or more buffer-
local variables, whether one of the 99 predefined buffer-locals, or one
defined specifically by a Major Mode for customization purposes.
You can also write a function yourself to do any crazy thing that
no one else could have thought of in advance, like send an email to
somebody mentioning that you’ve started editing that Python file.

Hooks are almost always set in the Init File, rather than via M-x

set-variable; see Programming the Lisp Machine.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Examining

Help, Discovery, and Documentation

All kinds of help for Emacs is never more than a keystroke away —
no need to switch to a web browser. The Help system (commands
on the prefix key C-h) provides quick access, especially for known-
item searches (“what is”, “where is”, “what does it do”). The Apro-
pos facility is more like a Google search, used when you want to do
something but don’t know what commands or Modes or subsystems
are available to do it (a query like “version control diff”, say). Finally,
Emacs has a built-in hypertext documentation reader, called Info, for
long-form, book-length documentation. To enter it, type C-h i. See
the Info chapter for more information.

Help

Emacs’s extensive online help is available via the help key, C-h 67. C-h 67 N.B.: in non-graphical mode, it’s
impossible for a program to distinguish
C-h from <backspace>, so you’ll need to
use either <f1> or ESC x help for help
in this case.

is a prefix key. Type C-h twice to get a window describing all the
following commands and more (a SPC will scroll this window). Some
of the most useful help commands are:

C-h a (apropos-command) Prompts for keywords and then lists all
the commands whose names match. If you’ve forgotten the name
of the command that counts words, C-h a word count will reveal
it.

C-h k (describe-key) Prompts for a keystroke and describes the
function bound to that key, if any. If you remember M-= but can’t
recall what it is, use C-h k (it’s count-words-region).

C-h w (where-is) Prompts (with Completion) for the name of a
function and tells you (in the Echo Area) what keystrokes will
invoke it. If you cheekily type C-h w where-is, you’ll see: C-h w,

<f1> w, <help> w.

C-h o (describe-symbol) Prompts (with Completion) for the name
of a function, a variable, or a face68 and describes all the matches. 68 A face is a font with associated styles,

such as color and slant; see Faces and
Fonts.

If you remember count-words-region but not what it does, C-h
o count-words-region will tell you. (C-h f will do the same but

https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help

100 keith waclena

only for functions, and C-h v only for variables, if you want to
narrow it down.)

C-h m (describe-mode) Describes the current Major Mode and its
particular key bindings.

C-h r (info-emacs-manual) Enters the Info hypertext documenta-
tion reader at the Emacs manual, which contains many hundreds
of pages of documentation.

C-h p (finder-by-keyword) Runs an interactive subject-oriented
browser of installable Emacs packages69. These lists of packages 69 Note that this does not include the

thousands of third-party packages
available in community repositories; see
The Package Manager for that.

are actually presented by the package manager itself, so you can
directly install packages from here.

C-h t (help-with-tutorial) Run the Emacs tutorial. Have you
done this yet?

There are 39 more help commands on C-h, which C-h C-h will
reveal.

Of the commands I list above, C-h k, C-h o, C-h f, C-h v, C-h m

(and a few of the other 39) bring up a Help Buffer. This is something
of a simplification, but there are three main varieties of the Help
Buffer:

• help for commands and functions, whether acquired via a keystroke
or via a command name

• help for variables

• help for Modes

Let’s see what these are like.

The Help Buffer

Let’s get help from C-h k for whatever C-x C-b is! This is the same
kind of buffer you’d get from C-h f (describe-function).

First note that the help pops up in its own buffer (named *Help*)
in a new window (stealing some screen real estate from the PKGBUILD

buffer I was looking at); the buffer is in help-mode (which of course
usefully redefines some keystrokes).

Often a quick glance at this buffer is enough to answer your ques-
tion and you just get rid of it with a quick C-x 1 (delete-other-
windows), perhaps after giving it a quick scroll with C-M-v (scroll-
other-window).

If you’re in an investigative mood, you might jump into the help
buffer with C-x o (other-window), where you can exploit its clickable
buttons (cyan text) and the the key bindings of help-mode.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Help-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window

use gnu emacs the plain text computing environment 101

Figure 8: Help for key C-x C-b

Parsing the Help Buffer

The first line identifies the function that C-x C-b runs: list-buffers,
and tells us which keymap (global-map) the keystroke was found in70. 70 For now, let’s just say that keymaps

hold key bindings, that there’s a global
one, one for the major mode, and one
for each minor mode in action at any
moment, and they’re searched in order
from most precise to most general; this
is how Emacs customizes keystrokes to
do mode-specific things.

It also tells us what kind of a function list-buffers is — “an
interactive compiled Lisp function”; it might also be a “built-in func-
tion” (which would mean it’s implemented in C, rather than Elisp)
— and it tells us which file of source code the function is defined in.
You don’t need to worry about any of this as a person just learning
to use Emacs, but it isn’t just idle chat: the cyan color of the file name
means that it’s a hypertext link, and if you “click” it (with mouse but-
ton 1 or by hitting return) it will take you directly to the definition of
that function in that file and you can read the source code yourself.

As an aside: this is an incredibly powerful tool for learning how to
extend Emacs. I guarantee that if you are wondering what function
the back-arrow button in Firefox runs when you click it, you’ll have to
spend a lot of time plowing through the >1 GB of source code (after
you download it) and cross your fingers when you search for “back”.
And if we were talking about the bold-face toolbar button in Google
Docs or Microsoft Word, you wouldn’t even be allowed to download
the proprietary source code.

The next paragraph lists all the key bindings which run list-

buffers — this is just what C-h w (where-is) would tell you.
The next line (“(list-buffers &optional ARG)”) shows you how

you would call the list-buffers function if you were writing Elisp,
and after that, how old this function is in terms of the Emacs ver-
sion number (this is mostly useful for programmers who might not

https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help

102 keith waclena

want to write code using a new bleeding-edge function that won’t be
available in older Emacsen71). 71 “Emacsen” is the official plural of

“Emacs”; see also The Jargon File.The remainder of the buffer describes precisely what list-buffers
does. This text may include more hyperlinks to other, related, func-
tions or variables (like buffer-menu here).

The help for a command can be extensive. But this is because the
documentation includes everything an Elisp programmer might need
to know; usually the first line or two tells you everything you need
for interactive use.

Finally, if this isn’t the first help buffer you’ve popped up in this
Emacs session, at the bottom of the buffer will be a button labeled
“[back]” which will take you to the previous help buffer you looked
at. Once you’ve gone back, there will be a “[forward]” button to
return you to where you came from. These are just like the back and
forward buttons in your web browser and make it easy to browse
through the hypertext of the Emacs help system. Note that there’s
really only one *Help* buffer, to keep from cluttering your Emacs;
the navigation buttons recreate the previous text in the same *Help*
buffer.

I mentioned that the help buffer is in Help Mode. This gives you
25 useful key bindings for use when you’re in the *Help* buffer.
For example, SPC is bound to scroll-up-command and S-SPC to
scroll-down-command for easy reading. C-c C-b and C-c C-f are
keyboard equivalents of the “[back]” and “[forward]” buttons. TAB
and <backtab> (a.k.a S-TAB) take you to the next and previous click-
able button respectively.

Help for a Variable

Now let’s look at the help for the variable completion-styles, which
we could see by executing C-h o completion-styles (or C-h v).

Figure 9: Help for variable completion-

styles.

It’s very similar to the help for a function, but it tells you right

http://www.catb.org/jargon/html/overgeneralization.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Scrolling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Scrolling

use gnu emacs the plain text computing environment 103

up front the most important thing about a variable: what it’s cur-
rent value is (here, the list of symbols (basic partial-completion

substring initials flex)). Interestingly, it also tells you that its
original value was (basic partial-completion emacs22): this is
the default value in a fresh Emacs: I changed it to demonstrate this
feature. There may also be a hyperlink into the Customize facility,
as here. The rest of the buffer is the documentation for the variable,
with the same features as for functions.

For some variables, the help will say “Automatically becomes
buffer-local when set.” This means that the variable can have distinct
values in different buffers, which is very useful for customization.
For some variables, a buffer-local value doesn’t really make a lot
of sense, like confirm-kill-emacs, which lets you specify whether
you want to be asked to confirm your intention when you give the
exit command. But you may well prefer the values of other variables
to vary from buffer to buffer or Mode to Mode, such as indicate-

empty-lines, fill-column, or truncate-lines.
The help for some variables may also address the safety of the

variable with a statement like “This variable is safe as a file local
variable if its value satisfies the predicate ‘integerp’.”; see Security
Concerns.

Help for a Mode

To get help for a Major Mode, just switch to a buffer that’s in that
Mode and do C-h m. The help buffer gives a description of the Mode,
and lists all the Mode-specific key bindings. In addition, each en-
abled Minor Mode is described separately.

You can also access Major Mode help from any Buffer using C-h f

and the name of the Mode, e.g. C-h f org-mode.

Discoverability via Apropos

Most of the Help commands described above answer specific ques-
tions about known items: what is this key? what does this function
do? what kind of values can I set this variable to? The Apropos facil-
ity is how you search for unknown functions and variables related to
what you want to do.

We’ve been introduced to the Apropos facility via C-h a above.
This is M-x apropos-command which searches for commands by name.
Command is the technical term for an interactive function: that is, a
function you can call via a key binding or with M-x. The reason for
making this distinction is purely practical. Emacs has tens of thou-
sands of functions, most of which would only ever be called by an

https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos

104 keith waclena

Emacs Lisp programmer. Commands are functions that are likely to
be useful to the non-programmer (or to the programmer when she’s
acting like a non-programmer).

If you’re interested in seeing non-command functions as well, you
can give C-h a an argument (e.g. C-u C-h a).

Even more broad-minded is just plain M-x apropos, which includes
all functions, variables, and faces.

If you want to limit your search to variables, you can use M-x

apropos-variable. But there are other Apropos commands to make
finer distinctions among variables:

M-x apropos-user-option only considers user-customizable vari-
ables (sometimes called options)

M-x apropos-local-variable only considers buffer-local variables
defined in the current buffer

All of the above commands are only searching by function or vari-
able name, to avoid overwhelming you. But you can include in your
search all the text of the function’s or variable’s documentation with
C-h d (apropos-documentation). This is just like C-h a but instead of
limiting its search to the names of commands, it includes all symbols
(like variables) and also searches the full text of the documentation
of these symbols. This is a much broader search, and for reasons of
both speed and concision, it limits the search to the standard built-in
Emacs commands. If you give C-h d an argument, i.e., C-u C-h d,
it searches the documentation of literally all symbols in your run-
ning Emacs, including those from third-party packages you may have
loaded.

Finally, you can also search the values of variables with M-x apropos-

value. This is a pretty big search. My Emacs at the moment has
15,121 defined variables, and some of them have pretty big values.

The Apropos Query Language

All the Apropos commands use the same query language. Your
query can take any of the following three forms:

a single word all the results must contain this word

two or more words all the results must contain at least two of these
words

a regular expression all the results must match this regular expression.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos

use gnu emacs the plain text computing environment 105

Additional Information

The Help key has several additional subcommands that provide
access to more information. Some of these are shortcuts into the
Emacs or Elisp manuals in Info, but some are standalone files.

C-h C-a Information about Emacs (recreates the splash screen you
saw when you started up Emacs).

C-h C-c Emacs copying permission (displays the complete text of
the GNU General Public License, which gives you your freedom to
copy, modify, and redistribute Emacs and its source code).

C-h C-d Instructions for debugging GNU Emacs. This is for real
hard-core programmers hacking on Emacs to fix deep bugs.

C-h C-e External packages and information about Emacs.

C-h C-f Emacs FAQ (the Frequently Asked Questions list).

C-h C-m How to order printed Emacs manuals.

C-h C-n News of recent Emacs changes; see Updates and Bugs.

C-h C-o Emacs ordering and distribution information. This used to
provide postal addresses you could write to in order to get copies
of Emacs mailed to you on giant 9-track magnetic tapes to load on
your mainframe! Nowadays, it just contains a few URLs and notes
how you can make donations to the Free Software Foundation.

C-h C-p Info about known Emacs problems. This is a broad sum-
mary of the standout Emacs bugs; the real bug list is available on
the Web in the Bug Tracker, which is also available in Emacs via
the debbugs package; see Reporting Bugs.

C-h C-t Emacs TODO list. If you’re a Lisp or C programmer and
want to contribute to the development of Emacs, you can start
here.

C-h C-w Information on absence of warranty for GNU Emacs.

https://debbugs.gnu.org/

Info: The Emacs Documentation Reader

Emacs has a built-in documentation reader called Info. It dates from
1985 and actually predates GNU Emacs (it was present in ITS TECO
Emacs) and was one of the earliest freely available hypertext systems,
predating the World Wide Web by about fourteen years years.

The Emacs manual is the most important Info document, but
Emacs ships with 63 additional manuals, comprising 395,759 lines
of text, describing various subsystems and major modes (e.g. Org,
Gnus, Calc).

Info documents are written in their own markup language, called
Texinfo, and Texinfo is used to document many other non-Emacs
software projects72. The non-Emacs packages I’ve installed on my 72 Texinfo is a front-end to the TEX

typesetting system, specifically de-
signed for software manuals, and can
generate PDFs, HTML (single-page or
multi-page), and more, in addition to its
default of generating Info manuals for
Emacs.

Arch Linux system include an additional 77 Info manuals. (Non-
Emacs users read these manuals with the info command-line doc-
umentation reader, which is sort of like a clone of the Emacs Info
system for Vim users and other Emacs-averse types, I suppose.)

The main entry points for Info are:

C-h i or M-x info Lists all installed manuals (there will be at least
sixty, if you’ve done a full install of Emacs).

C-h r or M-x info-emacs-manual Skip the top-level list and read the
Emacs manual directly.

C-h R (info-display-manual) Open a specific manual by name,
with Completion. C-h R calc would go directly to the Calc man-
ual, for example.

C-h F (Info-goto-emacs-command-node) This is like C-h f (describe-
function)—it prompts for the name of an Emacs function—except
it tries to find a discussion of the function in the Emacs manual
(while every Emacs function has Help documentation, they aren’t
all described in detail in the manual).

C-h K (Info-goto-emacs-key-command-node) This command is to
C-h k (describe-key) as C-h F is to C-h f.

https://en.wikipedia.org/wiki/Hypertext
https://www.gnu.org/software/texinfo/manual/texinfo/html_node/
https://www.gnu.org/software/emacs/manual/html_node/info/Create-Info-buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help

108 keith waclena

Info is of course documented in its own Info-manual, which you
can read with C-h R info (or just navigate to it from the main Info
menu via C-h i).

Info has its own interactive tutorial73, modeled on the Emacs Tu- 73 It’s actually Chapter 1: Getting Started
of the Info manual.torial, to teach you how the hypertext system works. Ideally, you

should take it before you start using Info; you can start the tutorial
by typing h (Info-help) from anywhere in any Info manual. But you
can read any Info document in its entirety by just hitting SPC (Info-
scroll-up), so feel free to just dive in; if you want more or need help,
hit h.

Figure 10: Typical Info node with menu

A typical page in an Info document (called a node) looks like that
in Figure 10. The very first line is a header line with next, previous,
and up navigation links for mouse navigation. The next line is a
breadcrumbs line that shows your position in the document hierarchy
with clickable links. The rest of the page consists of text, typically
with clickable hyperlinks to other pages. Often there is (as here) a
menu of links to subsections of the chapter; these are exactly the same
kind of links as appear interspersed in the text.

You can move around in Info within a node, or between nodes.
The usual motion and scrolling commands work fine for the former,
along with the convenient bindings SPC and DEL for scrolling up and
down by screenfuls.

Moving between nodes is more interesting. If you’re looking at the
bottom of a node74, SPC will move on to the next node, in the order 74 A node could be any number of

screens long.you’d use to read the entire document (DEL does the same backwards
if you’re at the top of a node).

Like any hypertext, an Info document has a tree structure75. While 75 Of course, it’s really a graph; see
Hyperlinks below.SPC moves node by node through the whole tree in reading order

https://www.gnu.org/software/emacs/manual/html_node/info/Help-\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {L\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 3309.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 2 L\egroup \spacefactor \accent@spacefactor
https://www.gnu.org/software/emacs/manual/html_node/info/Help-\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {L\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 3309.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 2 L\egroup \spacefactor \accent@spacefactor

use gnu emacs the plain text computing environment 109

(that’s a depth-first traversal), you can cut across the branches at any
level (breadth-first-wise) with n (Info-next) and p (Info-prev). So,
if you’re in the node for Chapter 3, n will go directly to Chapter 4,
skipping all subsections of Chapter 3, and if you’re in subsection 4

of section 2 of Chapter 6, n will go to subsection 5, and so on. p does
the same thing backwards. In other words, n and p are the keyboard
shortcuts for the Next: and Prev: links in the node’s header line. u
will go up to the parent of this node.

You can also move through nodes in the order in which you vis-
ited them: that is, move via your node-browsing history. The l

(Info-history-back) command goes left to the last node you were
in; more l’s go further back in time. The r (Info-history-forward)
command goes right, forward in time, assuming you’ve already gone
backward. These commands have no relation to the order of the
nodes in the document, but only to the order in which you’ve read
them. L (Info-history) takes you to a node containing the history of
all the nodes you’ve visited, as a Menu.

Hyperlinks

Info documents wouldn’t be hypertexts if they didn’t have hyperlinks.
These are exactly like the links in a web page and look similar: col-
orized and underlined. You can navigate from link to link in a node
with TAB (S-TAB goes in reverse) and then follow a link by “clicking”
on it (either with RET or the mouse). Info links can take you to other
places within a node, to other nodes in the document, and also to
nodes in other Info documents.76 Links to places in the same page 76 Info calls inter-node links cross refer-

ences.are formatted like footnotes.
You can also follow any of the links in the current node (even

if you can’t see some of them) without navigating to them with f

(Info-follow-reference), which prompts you for the text of the
link. You can use Completion to complete any of the links in the
node; note that Menu links and Footnote links are excluded from the
Completion, because they have their own shortcut commands.

Menus

Many Info nodes have menus, especially in the first node of a doc-
ument and in each chapter. Menus are nothing more than a list of
hyperlinks and work the same way; it’s just a convention for organiz-
ing an Info document. Menus typically list all the children of a given
node: that is, a chapter menu will list all the sections in that chapter,
and a section menu all its subsections.

You can use Completion to select a Menu item by typing m (Info-

https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search
https://www.gnu.org/software/emacs/manual/html_node/info/Help-Int
https://www.gnu.org/software/emacs/manual/html_node/info/Help-Int
https://www.gnu.org/software/emacs/manual/html_node/info/Help-Int
https://www.gnu.org/software/emacs/manual/html_node/info/Help-Xref
https://www.gnu.org/software/emacs/manual/html_node/info/Help-M
https://www.gnu.org/software/emacs/manual/html_node/info/Help-M

110 keith waclena

menu), analogous to the f command for cross references, and the digit
keys will jump directly to the node of the corresponding menu item:
e.g., 3 would jump to the node named in the 3rd menu item and so
on.

Searching

Since an Info node is just a buffer, you can obviously search within
it with the usual search commands like C-s (isearch-forward),
M-x occur, and the like. Incremental search commands like C-s will
beep when you get to the end of the node, but if you force the search
with one more C-s then instead of wrapping to the beginning of the
buffer, they will skip ahead to the next hit in the next node of the
document.

Indexes

In addition to full text searching, most Info documents are actually
manually indexed by their authors, and everybody knows that a
good index, what with synonyms, related terms, and inversion, can
offer accessibility that full text searching can’t. In addition, an index
allows for the possibility of Completion on index terms!

An Info document can have one or more indexes—Emacs-related
documents will often have separate indexes of Key Bindings, User
Options, Commands, Variables, and Concepts (the Emacs manual has
all of these).

The index pages of a document are always listed at the end of the
top-level menu of the document (its table of contents), but from any
node the i (Info-index) command prompts you for an index term,
with Completion, from any of the document’s indexes. Since a given
term can point to any number of nodes, it will take you to the first
occurrence, and if there are more, you might see a message like this
in the Echo Area:

Found ‘INDEXTERM’ in Concept Index. (20 total; use ‘,’ for next)

and indeed, the comma key will step you through all the hits.
Alternatively, you can instead use I (Info-virtual-index),

which presents the same hits as i but lists them all in a dynamically-
generated Menu.

You can also search across all sixty-plus Info documents at once
with M-x info-apropos, the search-engine of Info commands. It
works like other Apropos commands but targets the text of the in-
dexes of all installed Info files, and generates a dynamic Menu page
from the hits.

https://www.gnu.org/software/emacs/manual/html_node/info/Help-M
https://www.gnu.org/software/emacs/manual/html_node/info/Help-M
https://www.gnu.org/software/emacs/manual/html_node/info/Help-M
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/info/Search-Index
https://www.gnu.org/software/emacs/manual/html_node/info/Search-Index
https://www.gnu.org/software/emacs/manual/html_node/info/Search-Index

use gnu emacs the plain text computing environment 111

Higher-Level Navigation

You can jump directly to the top of the current Info document, with
its master Menu table of contents, with t (Info-top-node), and the d

(Info-directory) command goes to the Menu at the root of the entire
Info system, listing all installed Info documents (the same place that
C-h i takes you to).

Write Your Own Manual

If you are writing a book-length document, especially a manual for
software, and very especially a new manual for an Emacs subsys-
tem or Mode, you might consider using Texinfo format.77 You’ll get 77 If you’re not particular about low-

level layout details, you can use Texinfo
for any kind of book. For an example,
see Abelson et al. in the Bibliography.

many output options—PDF, HTML, DocBook, EPUB, and of course
Info, which can be read in Emacs and even by non-Emacs users via
the info command-line reader that’s standard on most Unix sys-
tems. And Emacs is of course especially suited for authoring with its
Texinfo Mode; see Emacs For Writers for more information.

https://www.gnu.org/software/emacs/manual/html_node/info/Help-Int
https://www.gnu.org/software/emacs/manual/html_node/info/Help-Int

Messages, Errors, and Lossage

Messages

Various brief messages appear in the Echo Area from time to time.
This includes error messages (like, trying to save a file that you don’t
have permission to write), and also informational messages. Some
commands exist only to print informational messages, such as C-x

l (count-lines-page), which tells you how many lines there are in
your buffer78: 78 Technically, and as the command

name indicates, this is how many lines
are in the current page of the current
buffer; see Editing with Textual Objects
for information about pages.

Page has 5549 lines (2407 + 3143)

If you miss a message like this, or if you want to make a copy of
the message, you can use C-h e (view-echo-area-messages). This
pops up the *Messages* buffer, which you can switch to for copies
of the N most recent79 Echo Area messages. It’s just a buffer like any 79 N is determined by message-log-max,

1,000 by default.other, so you can copy and paste from it.
There’s a separate buffer for warnings. Warnings are obviously like

errors, but less severe. While errors go to the Echo Area, and behind
the scenes are copied to the *Messages* buffer, warnings instead go
to a separate *Warnings* buffer, and when a warning is generated
this buffer pops up and is very noticeable. It seems counterintuitive
that warnings should be more in-your-face than errors; I think the
reason is two-fold: 1. the special handling of warnings is a relatively
new feature, dating from about Emacs version 22; and 2. an error
terminates whatever function raised it — it beeps, and you’ll look at
the Echo Area — whereas a function that generates a warning will
continue with what it was doing, but wants you to know something
that you might need to act upon. There’s no special command to pop
up the *Warnings* buffer; if you’ve deleted the window that popped
up, and you want to reexamine it, you can just switch to it by name
with C-x b (switch-to-buffer) (which you can also do to get to

Messages).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Pages
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer

114 keith waclena

What Just Happened?

Occasionally as you’re working, you might suddenly notice that
something unexpected has happened — perhaps a chunk of text has
disappeared before your eyes, or you’re suddenly in a completely
different location! What happened?

Almost certainly this means you accidentally hit some unintended
combination of keystrokes, and since so many such combinations are
bound to commands, this means you inadvertently told Emacs to do
something.

If a change to your text occurred, you can just Undo it and con-
tinue on. While you can’t Undo a location change, you can use the
Mark Ring or the Global Mark Ring to return to where you were. But
you might want to know what keystrokes and command you invoked
so that you can avoid hitting it in the future — or perhaps you’ve
discovered a new useful command to use intentionally!

The C-h l (view-lossage) command80 pops up a Help Buffer 80 “Lossage” is an old computer jargon
term meaning “the result of a bug or
malfunction” (The Jargon File).

showing the last 300 keystrokes you’ve typed. The lines look like this:

M-> ;; end-of-buffer

q ;; quit-window

C-x b ;; switch-to-buffer

c ;; self-insert-command

o ;; self-insert-command

showing you the keystroke and the command name. You can ask
for help for any of the command names (with C-h f (describe-
function)) which can help you figure out what happened.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
http://www.catb.org/~esr/jargon/html/L/lossage.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help

The Minibuffer

Sometimes a command needs to ask you a question. C-x C-f asks,
“What file did you want?” C-x b asks, “What Buffer did you want?”
M-x asks, “What long-named command did you want me to exe-
cute?”

To get your answer, Emacs uses its most general and most pow-
erful data structure, the Buffer, but to avoid constantly popping up
a new one and messing with your Window layout, it uses a special
Buffer called the Minibuffer (see “Minibuffer” in the Emacs manual),
which is always displayed in a compact form in the same location. In
fact, the Minibuffer reuses the fixed Window that’s used for the Echo
Area at the bottom of the screen. The question, or prompt, appears
in the Echo Area, which is automatically focused to receive your
response, and when you hit RET, the little excursion is over.

The advantage of using a Buffer, rather than something like a
modal GUI dialog widget, would be that you already know how
Buffers work, and you can interact with this Minibuffer using the
same commands you use all day long.81 81 Also, one of the best things about

Emacs is that it is almost 100% mode-
less, in the sense of “modal dialog”.

The Echo Area, and thus the Minibuffer’s Window, is normally
only one line high — just enough space for a typical prompt and
your response, though it will dynamically expand to more lines as
needed, and you can change the default height if you like.

The Minibuffer has its own Major Mode, with a few specialized
key bindings. Most notable is that hitting RET is how you indicate
that you’re done typing your answer: RET deactivates the Minibuffer
and your cursor is returned to the Window it was in when the inter-
action started.

While it has some special behavior and a few restrictions, the
Minibuffer is otherwise very much a fully-functional Emacs Buffer.
All the usual editing commands work — you can move around
within it to correct mistakes, you can even do fancy things like search
within it, you can kill and yank text, use spelling correction, or any-
thing else82. 82 Why would you need to search or

spell-check within a one-line response
to a question? Well, nobody specifically
thought that it would be important
to be able to do so: it’s just that the
Minibuffer is a buffer like any other, so
of course it works!

https://www.gnu.org/software/emacs/manual/html_node/emacs/Minibuffer
https://en.wikipedia.org/wiki/Modal_window

116 keith waclena

Minibuffer History

In addition to the special treatment of RET, the Minibuffer’s Major
Mode provides convenient history commands. You can instantly re-
call your previous input — command name, filename, Buffer name. . .
— with M-p (previous-history-element); subsequent M-p’s will go
further back, and you can switch directions and go forward again
with M-n (next-history-element) — the up- and down-arrow keys
are synonyms. (Rather than navigating the history, C-p and C-n nav-
igate multi-line input as in any Buffer — multiple lines, while atypi-
cal, are completely supported in the Minibuffer).

You can also search backward in the history with C-r (isearch-
backward) or C-M-r (isearch-backward-regexp). You could, say,
quickly pull up the last Org Mode file you edited with C-x C-f C-r

.org, even if you last typed that filename days ago.
Note that any individual command can have its own distinct his-

tory list. This is typically done to tamp down the Completion pos-
sibilities for any given command to those that are most likely to be
useful. Since the Minibuffer is used for all prompted inputs, if it only
had one history list, then you’d have to wade through Buffer names,
command names, color names, variable names — you get the idea —
no matter what you were about to enter.

Instead, all the file-visiting commands, like C-x C-f, share a single
history list which only contains filenames; likewise for C-x b and
Buffer names, M-x and command names, etc.

Future History

One of the lesser-known features of the Minibuffer83 is that its his- 83 Well, I’m embarrassed to say I only
figured this out recently!tory extends into the future: that is, Emacs can predict inputs that

you haven’t typed yet! More prosaically, you could call these predic-
tions, defaults. You access these defaults with M-n (next-history-
element) — use it immediately after you’ve been prompted for input
by some command and it’ll offer up suggestions: if you’re at the end
of the history, the next history element is from the future!

For example, after C-x b (switch-to-buffer), M-n will offer up
names of Buffers that you’ve recently visited (even if you haven’t ever
explicitly input their names). C-x C-f will do something similar, but
in addition, if, before you invoked C-x C-f, Point happened to be in
the name of an existing file, it will offer up that filename. Sometimes
the things M-n comes up with can seem telepathic. (The flip side is
that sometimes it won’t have any guesses for you.)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Minibuffer-History
https://www.gnu.org/software/emacs/manual/html_node/emacs/Minibuffer-History
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Minibuffer-History
https://www.gnu.org/software/emacs/manual/html_node/emacs/Minibuffer-History
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer

use gnu emacs the plain text computing environment 117

Recursive Minibuffers

The Minibuffer is the sole, unified way to get prompted input, and
you can use any commands you like when you’re entering text there.
So what happens if you type M-x eww to pull up a web page in the
Emacs web browser. Eww is now using the Minibuffer to read a
URL, prompting you with:

Enter URL or keywords:

Then you realize you don’t remember the precise URL you need,
but you know it’s in a file. So you naturally type C-x C-f (find-
file) so you can observe and copy that URL.

But no! Emacs will beep at you and refuse to execute C-x C-f,
saying:

Command attempted to use minibuffer while in minibuffer

That is, you’re in the Minibuffer (entering a URL) but C-x C-f now
needs to use the Minibuffer to read a filename!

This is not really a limitation of Emacs, which actually has no
problem allowing you to invoke the Minibuffer recursively to any
(reasonable) depth. However, this feature is disabled by default —
because it’s been found to confuse Emacs newbies.

But this many pages into this book, you’re no longer a new-
bie! While my example may be somewhat contrived, recursive
Minibuffers are very useful and you’ll probably want them several
times in a day. I recommend turning them on with this snippet of
code in your init file:

Init File
(setq enable-recursive-minibuffers t)

If you recursively invoke a Minibuffer and change your mind
about it, just hit C-g (keyboard-quit) as usual; it will abort the most
recent Minibuffer and you’ll be back in the previous one and can
complete your input there as you like.

Temporary Excursions

When you’re entering information in the Minibuffer, you may occa-
sionally realize that you don’t actually know what you need to type,
as in our URL example. You have to check something first.

The normal procedure is just to use C-g (keyboard-quit) to cancel
the command that’s using the Minibuffer, do your investigation, and
then reissue the command. How very modal of you.

But you can instead just temporarily switch out of the Minibuffer
with any command that switches Windows. Normally that would

https://www.gnu.org/software/emacs/manual/html_node/emacs/EWW
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting

118 keith waclena

be C-x o (other-window) but any Window-changing command, or
clicking in another Window with the mouse, is fine.

Now you’re in one of your “normal” Windows, and the Echo Area,
instead of being blank, as usual, still contains the Minibuffer prompt
and whatever else was displayed there when you jumped out: the
Minibuffer is frozen the way you left it, waiting for you to return and
finish what you were doing. In a graphical mode Emacs, you’ll notice
that the Minibuffer cursor has changed from a solid rectangle to a
hollow one.

While you’re away, you can do anything you like: continue edit-
ing, play a game with M-x tetris, copy some text you need for the
Minibuffer: you can even, of course, use a command that uses the
Minibuffer!84 You can stay away as long as you like. When you’re 84 Thanks to our Init File addition

above.ready to get back to where you left off, just navigate to the Minibuffer
(again, C-x o or a mouse click is the most natural), and complete
your action, perhaps yanking in some text you copied for the pur-
pose. Hit RET to execute the patient, long-suffering command-in-
progress, and you’ll be returned to wherever you were when you
started this excursion — the Window layout and your Buffer position
will be restored as they were, even if, during your excursion, you
changed Windows around radically. This is the essence of non-modal
editing!

Repeating Complex Commands

Among people who use Emacs mostly as a text editor, the Minibuffer
is probably most heavily used to input file names, followed by
Buffer names. But as you use Emacs for more things, the use of the
Minibuffer to enter command names with M-x (execute-extended-
command) probably dominates. So Emacs provides special history
support for these.

We know that if you type M-x you can retrieve previous commands
from the history with M-p, C-r, and M-r, but some commands have
multi-part inputs. Consider M-x rgrep (see Meet the Greps). It’s nice
that the Minibuffer history helps you avoid typing all five charac-
ters of “rgrep” to run a new Rgrep, but what if you want to rerun a
previous Rgrep exactly?

M-x rgrep prompts you for three things: a search term or regu-
lar expression, a file type wildcard pattern (e.g., *.org), and a base
directory from which to start the search. You can use the history
commands at each of these prompts, but that can be a little tedious if
you just want to rerun the command exactly: M-x M-p RET M-p RET

M-p RET M-p RET.
Instead, you can use C-x ESC ESC (repeat-complex-command). You

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://www.gnu.org/software/emacs/manual/html_node/emacs/M-x
https://www.gnu.org/software/emacs/manual/html_node/emacs/M-x
https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/Repetition

use gnu emacs the plain text computing environment 119

get a Minibuffer prompt showing your previous M-x command, in its
true Elisp form; it might look like this:

Redo: (rgrep "minibuffer" "*.org" "~/txt/" nil)

Even if you’re not an Elisp programmer (yet), this should be rec-
ognizable as your grep for the string “minibuffer” in Org Mode files
contained (recursively) in ~/txt/; just hit RET to re-run it, with no
need to reenter the three parameters. You can edit the command be-
forehand (perhaps to tweak the regexp, or the file type, or the base
directory)85. 85 This might occasionally require a

superficial knowledge of Elisp syntax,
such as quoting.

You can use the Minibuffer history (M-p, C-r, M-r) as usual here to
choose a different prior command. Note that the history includes any
command that used the Minibuffer, even if you invoked it via a key
binding, so you’ll find old friends like C-x C-f (find-file) and C-x

b (switch-to-buffer) here as well.
You can view a Buffer of the N most recent86 M-x commands with 86 N is determined by list-command-

history-max, 32 by default.M-x list-command-history. The commands are in their true Elisp
form, as for C-x ESC ESC, one per line. In this Buffer you can re-run
the command at Point by typing x (command-history-repeat).

Since the default command history list is so short, and since I
think RET in this Buffer should execute the command at Point, I rec-
ommend this snippet for your init file:

Init File
(with-eval-after-load 'chistory

(setq list-command-history-max 120)

(define-key command-history-map (kbd "<return>") 'command-history-repeat))

An Aside Concerning Completion Frameworks

Note that alternative Completion frameworks, and Incremental Nar-
rowing Frameworks in particular, may radically alter the nature of
the Minibuffer, making it seem less like a normal buffer, and some of
the things described in this chapter may not work precisely the same
way.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Repetition

Completion

Everyone is familiar with completion, perhaps under the name “auto-
fill”, which usually refers to the automatic completion of fields in
forms. Web browsers, spreadsheets, and smartphone applications
autofill via drop-downs, and Unix users are of course familiar with
the TAB-completion of commands, options, and filenames in any
conventional shell87. 87 The first substantial implementation

of completion probably dates from its
use in the TENEX operating system in
1969; then in the TENEX-inspired Unix
shell tcsh in 1981.

Emacs definitely had completion for the Minibuffer by 1985 and as
a text-oriented computing interface that prioritizes the keyboard over
menus, it’s fundamental to using Emacs. Completion is pervasive:
almost anytime Emacs prompts you for information — command
names, variable names, filenames, color names, lists of words —
completion is available; it’s also available at Point in many buffers
(e.g., to complete symbols and keywords in programming languages,
as you type).

This is not to be confused with the predictive autocompletion or
autocorrect for prose that you’re used to from the text messaging
app on your phone, where every word you enter is automatically
turned into a typo for you!88 Instead, you can autocomplete natural 88 Though Emacs has third-party li-

braries for that, if you like.language words via an explicit keystroke; Emacs calls this expanding
dynamic abbreviations.

Neither is it to be confused with template expansion, where an en-
tire complex piece of text, like say a case statement in a program-
ming language, is expanded from one word.

As completion examples I’ll use M-x commands, because the basic
set of them is common to all Emacs users — filenames and buffer
names are going to be unique to each person — but don’t forget that
it works the same for everything.

A Shortcut to Completion

Emacs has a number of ways of performing completion that I’ll call
completion frameworks. The default framework is roughly the way
completion has always worked since about 1985, but you definitely
want to use a more modern framework of the type known as incre-

https://en.wikipedia.org/wiki/TENEX_(operating_system)
https://en.wikipedia.org/wiki/Tcsh

122 keith waclena

mental narrowing. Even here, Emacs has more than one choice.
I’m going to recommend you start right off with Vertico89, which 89 There are many others in the Package

Manager; I prefer Selectrum myself.you can install from the GNU ELPA Package Repository; see Figure
11.

Figure 11: M-x switch-to-buffer via
Vertico

You’ll need to add this to your Init File and restart your Emacs90: 90 Or set the Region around this snippet
and say M-x eval-region.

Init File
(setq completion-styles '(partial-completion substring flex))

(unless (package-installed-p 'vertico)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'vertico)))

(with-demoted-errors "%s" (vertico-mode +1))

An incremental narrowing framework (INF) generally lets you com-
plete a string (whether a M-x command name, file name, buffer name,
or anything else) by typing a pattern consisting of clusters of adja-
cent letters separated by punctuation. So to complete the command
switch-to-buffer, you can type sw-to-bu which rapidly narrows the
matches down from 20,526 possible commands to a mere 7.

The entire line of one of the matches will be highlighted; this is
the match that will be used if you hit RET. If switch-to-buffer is
not highlighted yet, you’ll need to either narrow it down further,
by adding more letters, or, when the number of matches is small
enough, just navigate to it with C-n or the down-arrow key.

If there are more than the default 10 matches, you can scroll
through them until you spot the one you want, or edit your pattern
(with the usual Minibuffer editing commands) to narrow it down fur-
ther. The usual Minibuffer history commands work as well. See Table
4.

Done!

When your target is properly highlighted, you’re done. Hit RET to
select it. If you’re completing a M-x command, the command will be
executed. However, if you’re entering a filename for, say, find-file

https://github.com/minad/vertico
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting

use gnu emacs the plain text computing environment 123

Key Type Action
C-n, ↓ Move Move down to highlight next match
C-p, ↑ Move up to highlight previous match
RET Done Select the highlighted match
C-RET Use the exact text that you typed
C-v Scroll Scroll down to reveal the next 10 matches
M-v Scroll up to reveal the previous 10 matches
M-> Scroll to the bottom of the matches
M-< Scroll to the top of the matches
M-p History Pull up the previous history element
M-n Pull up the next history element

Table 4: The Main Vertico Commands

or a buffer name for switch-to-buffer, you may be intentionally
typing a nonexistent name, to create a new file or buffer, which there-
fore can’t possibly have a match! In this case, you use C-RET to select
not the highlighted match, but the exact text you’ve typed, as is.

Complementary Packages

Vertico is designed to be enhanced and customized via a set of com-
plementary packages. I also recommend installing Marginalia, which
provides annotations in the Minibuffer adjacent to command names,
file names, buffer names, and more.

Init File
(unless (package-installed-p 'marginalia)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'marginalia)))

(with-demoted-errors "%s" (marginalia-mode +1))

Now M-x sw-to looks like Figure 12 and C-x C-f looks like Figure
13:

Figure 12: M-x with Marginalia

Other Incremental Narrowing Frameworks

I think Vertico is one of the best INFs, but Emacs has a few other
built-in INFs to choose from, and more in the Package Manager. The

https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://github.com/minad/marginalia

124 keith waclena

Figure 13: C-x C-f with Marginalia

built-in INFs are Icomplete (M-x icomplete-mode), Ido (M-x ido-

mode) (“Incremental Do”: see the Ido manual) and Fido (M-x fido-

mode). Unlike most modern INFs, their interface is horizontal. When
you hit M-x, you’ll see something like this:

M-x {execute-extended-command | enable-theme | dired-at-point | ...}

You navigate through the matches with the left- and right-arrow
keys. (I’m showing an abbreviated version; you’ll typically see half-
a-dozen candidates, possibly spread across at most two minibuffer
lines.) Note that you don’t need to hit TAB to see these candidates:
that’s a big part of what makes an INF more efficient. These will
narrow as you type.

They all work together, and if you want to use them, you should
probably turn all three of them on in your Init File:

(icomplete-mode 1)

(ido-mode 1)

(fido-mode 1)

Most modern INFs have chosen, like Vertico, to go for a vertical
presentation of the candidates, using a multiple-line expanding
Minibuffer; this gives more room for long command and file names,
and in some frameworks, useful extra information like that provided
by Marginalia.

The other vertical INF in the GNU package repository is Ivy; it
has more built-in features, which are quite powerful, but due to its
complexity, it may not interact as well with some Emacs subsystems.
(Vertico aims for 100% compatibility and comes very close by being
simple.)

Third-Party INFs

The king of Emacs INFs for some time had been Helm, which dra-
matically remakes dozens, perhaps hundreds of Emacs commands
(though you can configure it to be more or less intrusive). Its comple-
tion buffer can take up the bulk of your screen and present scads of
additional information. It allows you to do a variety of actions (like,
deleting files) in mid-completion, and its fans are very devoted. I find

https://www.gnu.org/software/emacs/manual/html_node/emacs/Icomplete
https://www.gnu.org/software/emacs/manual/html_node/ido/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Icomplete
https://www.gnu.org/software/emacs/manual/html_node/emacs/Icomplete
https://github.com/abo-abo/swiper
https://emacs-helm.github.io/helm/

use gnu emacs the plain text computing environment 125

it to be too bulky, too intrusive, and too complex and confusing. It’s
also now apparently abandonware.

For Emacs purists who want to do their editing with mental pow-
ers alone, there’s Icicles. It’s amazingly powerful and I used it for
some time, but I ultimately abandoned it because I had trouble get-
ting it to work with Tramp; in addition, the author chooses not to
make it available via the Package Manager and so it’s daunting to
acquire91. 91 It’s published on the EmacsWiki; I

wrote a 67-line Makefile to automate
downloading and upgrading it.

There are other options like Raven, Sallet, and Snails, but I have
recently settled on Selectrum, one of the newest (but surely not the
last) Emacs INFs. For me it combines simplicity and utility perfectly,
and instead of taking a kitchen-sink approach to features, can use the
same optional add-ons (like Marginalia) as Vertico.

Completion in Normal Buffers

In this chapter, we’ve discussed completion in the Minibuffer, but
Emacs also does completion in normal buffers. It comes in two fla-
vors: explicitly-activated completion at Point, and implicitly-activated
completion via a popup menu.

For the former, when you’re half-finished typing a word, you hit
M-/ (dabbrev-expand), and Emacs completes the word for you. This
an amazing feature and an essential skill to pickup; see Completion at
Point.

For the latter, you can arrange to have a (lightweight, non-GUI,
plain-text) menu pop up as you’re typing, showing you possible com-
pletions, any of which you can select by quickly navigating to it with
the arrow keys. This popup completion isn’t typically enabled for
ordinary words in prose, but rather in buffers whose Major Mode
usefully limits the candidates. In particular, in programming lan-
guage modes, where library functions and symbols in the buffer are
presented. See Pop-up Menu Completion.

References

• Free Software Foundation. 2020. Interactive Do. Cambridge, MA:
Free Software Foundation. https://www.gnu.org/software/
emacs/manual/ido.html. Read in Emacs with M-x info-display-manual

RET ido RET.

• [Krehel, Oleh]. n.d. Ivy User Manual. https://oremacs.com/
swiper/. Read in Emacs with M-x info-display-manual RET ivy

RET.

https://en.wikipedia.org/wiki/Abandonware
https://www.emacswiki.org/emacs/Icicles
https://github.com/raxod502/selectrum
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic-Abbrevs
https://www.gnu.org/software/emacs/manual/ido.html
https://www.gnu.org/software/emacs/manual/ido.html
https://oremacs.com/swiper/
https://oremacs.com/swiper/

What is Text?

I call Emacs the “Plain Text Computing Environment”, but what
exactly is text?

The notion of text is fairly intuitive to Unix users, elderly com-
puter users of any stripe, and programmers, but may actually be
puzzling to younger users who have spent all their lives interacting
with GUI desktop applications, or tablets and smartphones only.

Classically, text consists of the printing characters from the ASCII92 92 American Standard Code for Informa-
tion Interchange.character set: that is, upper- and lowercase letters, digits, punctuation

marks, and a few whitespace characters. These are the characters
that make up the bulk of your keyboard. Here’s the complete ASCII
character set: ignoring whitespace, the printing characters are those
from (decimal) 33 through 126:93 93 The funny 2- and 3-letter names in

the table are the historic 1967 abbrevia-
tions for the official Teletype names of
the non-printing characters.

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

0 00 NUL 16 10 DLE 32 20 48 30 0 64 40 @ 80 50 P 96 60 ` 112 70 p

1 01 SOH 17 11 DC1 33 21 ! 49 31 1 65 41 A 81 51 Q 97 61 a 113 71 q

2 02 STX 18 12 DC2 34 22 " 50 32 2 66 42 B 82 52 R 98 62 b 114 72 r

3 03 ETX 19 13 DC3 35 23 # 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s

4 04 EOT 20 14 DC4 36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t

5 05 ENQ 21 15 NAK 37 25 % 53 35 5 69 45 E 85 55 U 101 65 e 117 75 u

6 06 ACK 22 16 SYN 38 26 & 54 36 6 70 46 F 86 56 V 102 66 f 118 76 v

7 07 BEL 23 17 ETB 39 27 ' 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w

8 08 BS 24 18 CAN 40 28 (56 38 8 72 48 H 88 58 X 104 68 h 120 78 x

9 09 HT 25 19 EM 41 29) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 y

10 0A LF 26 1A SUB 42 2A * 58 3A : 74 4A J 90 5A Z 106 6A j 122 7A z

11 0B VT 27 1B ESC 43 2B + 59 3B ; 75 4B K 91 5B [107 6B k 123 7B {

12 0C FF 28 1C FS 44 2C , 60 3C < 76 4C L 92 5C \ 108 6C l 124 7C |

13 0D CR 29 1D GS 45 2D - 61 3D = 77 4D M 93 5D] 109 6D m 125 7D }

14 0E SO 30 1E RS 46 2E . 62 3E > 78 4E N 94 5E ^ 110 6E n 126 7E ~

15 0F SI 31 1F US 47 2F / 63 3F ? 79 4F O 95 5F _ 111 6F o 127 7F DEL

You’ll notice right away that this 1963 American standard doesn’t
really accommodate non-English speakers, which is why there are
so many other character sets94. Nowadays, text would be defined 94 There are many! One Unix utility

handles 2,036 different character sets!to include all the printing characters, international and specialized,
in the enormous standardized Unicode character set (Emacs knows
64,414 of them by name) and the 267-odd other character sets Emacs
supports.

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Teleprinter
https://en.wikipedia.org/wiki/Unicode

128 keith waclena

The Structure of Text

Lines are the fundamental unit of organization for most (but not
all) text. Text consists of a sequence of lines, and lines are separated
by end-of-line characters.95 We usually loosely call the end-of-line 95 Data that doesn’t consist primarily of

printing characters is generally called
binary data and comes in innumerable
formats; one example would be an
image format like GIF. Emacs is happy
to work with binary data too, but it’s
not really its main thing.

character a newline (but see International Character Set Support for
the gnarly details). You can enter a newline, and thus begin a new
line, by hitting the key Emacs calls RET or <return>, which on your
keyboard might also be labeled ENTER.

The end of a line at the very end of a Buffer is somewhat am-
biguous96. Suppose we have a Buffer whose text consists of “foo”, a 96 As is whitespace in general; see Visual-

izing Whitespace.newline, and “bar”; that’s 7 characters, but how many lines is it? In
your Buffer it looks like:

foo

bar

and to me, that’s unquestionably two lines. Emacs agrees. C-x l

(count-lines-page) reports:

Page has 2 lines (0 + 2)

and — further confirmation — if we invoke M-x linum-mode, the
buffer looks like:

1 foo

2 bar

But there’s no newline after “bar”! If we add one, the buffer looks the
same, and C-x l and linum-mode both still report two lines. In other
words, the number of lines is not necessarily exactly the same as the
number of newline characters.

Unfortunately, this ambiguity is simply a fact of computing life.
The good news is, 1. it doesn’t usually cause any problems, and 2.
Emacs has extensive facilities for dealing with it; see Manipulating
Plain Text for details.

When Emacs was fresh and new in the 1970s, people entering
prose text would typically hit RET after typing 72 characters or so,
and almost always before 80.97 Paragraphs were typically separated 97 The magic of 80 characters or

columns was a holdover from the
days of the punched card, which in turn
led to computer terminals with screens
that measured 80 columns wide.

by an empty or blank line (i.e., a line consisting solely of a newline,
or possibly a sequence of whitespace characters followed by a new-
line), or by a line with leading indentation (i.e., a few spaces), or
both: exactly how you’d type it on a typewriter. Emacs’s Text Mode
(see “Text Mode” in the Emacs manual) is designed for this kind of
prose text and has support for automatic wrapping, indenting, and
filling of paragraphs.

But there’s no limit to the length of a text line, and in fact in the
modern world, the current convention is that each line of typed text

https://en.wikipedia.org/wiki/GIF
https://www.gnu.org/software/emacs/manual/html_node/emacs/Pages
https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Computer_terminal
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Mode

use gnu emacs the plain text computing environment 129

is in fact an entire paragraph, and paragraphs therefore no longer
even need to be separated by blank lines (though they may be). This
convention arose with GUI applications, whose windows weren’t
limited to 80 column lines and whose widths could be resized at will:
single-line paragraphs auto-fill as the screen is resized, but multi-line
paragraphs do not. Emacs of course supports this convention but
it’s not the default, primarily because Emacs was written by and for
programmers, and both computer programs and computer data files
are typically expressed as lines with explicit newlines, and the lines
may have semantic significance.

For details on how long lines are displayed and what you can do
to change it, see The Display of Lines.

What Isn’t Text?

There’s no law that says text can’t include non-printing characters,
like, say, a C-a (which is ASCII 1 decimal). If a file contains only
printing characters, it clearly deserves the label “text”; if it contains
none, it clearly doesn’t and instead we call it binary data. But in be-
tween, the label is a judgment call. Regardless, Emacs needs to show
you non-printing characters when they occur.

(I’m afraid this section has to be very nerdy; none of this will
surprise a programmer, but the explanation of it all involves the
distant history of computing, computing Standards (gulp), and a
variety of number bases. Feel free to skip ahead!)

When one of the ASCII control characters—those in the range deci-
mal 0–31

98—occurs in a Buffer, Emacs displays it specially, using the 98 There’s also the rogue control charac-
ter, DEL (ASCII 127 decimal), at the end
of the ASCII table. Sorry about that!

traditional programmer’s notation for control characters: a circumflex
followed by an uppercase letter (or punctuation mark in six cases),
for example ^A, which is the same character that Emacs refers to as
C-a. Table 5 shows these in the “Control” column.

Thus, in your Buffer, a single control character displays as a pair of
characters. This is ambiguous: is that ^A one character, ASCII decimal
1 aka SOH, or is it the two printing characters, ^ followed by A? There
are two ways tell:

1. by movement: your cursor will skip over a control character with a
single C-f (forward-char), where it would take two C-f’s to move
over the pair of printing characters;

2. by color: the control characters are colored differently than the
printing characters; if your Buffer text is black-on-white, the con-
trol characters will be red e.g. ˆA; if your Buffer text is white-on-
black99, the control characters will be cyan e.g. ˆA. 99 As from starting up Emacs with the

-rv or --reverse-video option, or
having chosen a dark theme.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

130 keith waclena

Dec Hex ASCII Control Dec Hex ASCII Control
0 00 NUL ^@ 16 10 DLE ^P

1 01 SOH ^A 17 11 DC1 ^Q

2 02 STX ^B 18 12 DC2 ^R

3 03 ETX ^C 19 13 DC3 ^S

4 04 EOT ^D 20 14 DC4 ^T

5 05 ENQ ^E 21 15 NAK ^U

6 06 ACK ^F 22 16 SYN ^V

7 07 BEL ^G 23 17 ETB ^W

8 08 BS ^H 24 18 CAN ^X

9 09 HT ^I 25 19 EM ^Y

10 0A LF ^J 26 1A SUB ^Z

11 0B VT ^K 27 1B ESC ^[

12 0C FF ^L 28 1C FS ^\

13 0D CR ^M 29 1D GS ^]

14 0E SO ^N 30 1E RS ^^

15 0F SI ^O 31 1F US ^_

Table 5: ASCII Control Characters,
Excepting Delete

There are other characters, which are tricky to classify as printing
or non-printing, that aren’t part of the original ASCII character set:
they would occupy the slots from 128–255 decimal in an expanded
table. If these characters appear in a Buffer (one using the binary

Coding System), they are represented as a backslash followed by a
three-digit number e.g. \304.100 Again, your cursor will move over 100 I’m sorry to report that these are

Octal (i.e. base-8) digits; you’ll just
have to trust me that there was a good
historical reason for this choice.

such a character in one step, and they’re colored the same as the
control characters.

Inserting Non-Printing Characters

If you’re curious and want to see some of these non-printing char-
acters in a Buffer, you can just visit a native-code executable file on
your computer.101 But what if you need to insert one? Obviously you 101 On a Unix system, try C-x C-r

/bin/date.can’t insert a ^A by typing C-a—that will just move your cursor to the
beginning of the line!

The basic command for this is C-q (quoted-insert). Inserting a
control character is easy: to insert a ^A, just type C-q C-a. You can
also needlessly quote printing characters—say, C-q A—which just
inserts the printing character normally.

What if you want to insert “international”, non-Latin, characters
from Unicode, or you want to type fancy glyphs like Æ, or ¶? See
International Character Set Support for details.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Inserting-Text

Buffers

Just as in Unix “everything is a file”, in Emacs “everything is a buffer”.
[. . .] In most [. . .] editors (and most other applications, for that mat-
ter), we have things such as dialog windows, non-editable text ar-
eas [. . .], file-selecting widgets, etc. Not in Emacs: here, all these are
buffers. — Marcin Borkowski, “TEXing in Emacs”

A Buffer is a very complex data structure. Most importantly a
Buffer contains text, but additionally each Buffer keeps track of var-
ious locations (where you are now and where you’ve been recently)
and parameters (like how much to indent lines), maintains an Undo
history, has a Major Mode that customizes commands run in the
Buffer to work distinctively on the type of text it contains, may have
several Minor Modes to further tweak behavior to your taste, and
has a set of key bindings that may be different from those in other
Buffers. If it’s visiting a file, the Buffer keeps track of its state com-
pared to the file on disk.102 102 I’m using the term data structure

loosely here, from the perspective of
the Emacs user, not the programmer;
really, most of these features of buffers
are composed of sets of buffer-local
variables.

In this chapter we’re mostly going to talk about Buffers as unitary
objects, as distinct from what they contain. The text in the Buffer is
much more than just a sequence of alphanumeric characters; how it is
entered and displayed is the subject of its own chapter.

The maximum Buffer size is plenty big enough for most purposes:
2,305,843,009,213,693,951 bytes; that’s about 2.3 exabytes. Practically
speaking, this is limited by the amount of memory available on your
system for Emacs to use.

Switching Buffers

To switch Buffers means, specifically, to change which Buffer is dis-
played in a given Window. The basic command to do this is C-x b

(switch-to-buffer); it displays a different Buffer in the current Win-
dow, prompting for the new Buffer by name, using Completion. You
can also use one of these variant versions:

C-x 4 b (switch-to-buffer-other-window) Switch to a different
Buffer not in this Window, but in the “other” Window.103 103 The “other” window is the window

that C-x o (other-window) would
switch to; see Switching Windows.

https://www.tug.org/TUGboat/tb39-1/tb121borkowski-emacs.pdf
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window

132 keith waclena

C-x 5 b (switch-to-buffer-other-frame) Switch to a different
Buffer not in this Frame, but in another Frame; if the Buffer is
already displayed in a Window in another Frame, switch to that
Frame and Window; if not, a brand new Frame is created and the
Buffer is displayed in the Window in that Frame.

You can also switch quickly to Buffers you’ve recently used with-
out specifying their names. Emacs maintains its list of Buffers in a
ring in recency order.

C-x <C-left> (previous-buffer) switch to the previous Buffer you
were in (in this Frame); repeating this command goes further back
in the Buffer-recency timeline

C-x <C-right> (next-buffer) the same, but go forward in timeline
order.

(You can also use the less felicitous bindings C-x <left> and
C-x <right>.)

The User Option switch-to-prev-buffer-skip allows you to cus-
tomize which Buffers these two commands consider to be candidates.

The Global Mark Ring provides another way of switching Buffers:
C-x C-SPC (pop-global-mark) will jump to previous Mark locations

in other Buffers.

The Tab Line

Outside of Emacs, Tabs (not to be confused with the ASCII TAB char-
acter nor with tab stops) are a pervasive graphical user interface
design element for navigating between multiple “objects” in an ap-
plication: whether web pages, word processor documents, desktop
windows, or whatever. The objects being the subject matter of the
application, they would correspond to Buffers in Emacs. Yet Emacs
hasn’t had Tabs until quite recently104: Completion and the Buffer 104 Somewhat confusingly, it suddenly

has two kinds of Tabs; see also the Tab
Bar.

Menus have sufficed for Emacs users for decades.
But now you can turn on the Tab Line. The Tab Line is a per-

Window construct: a special sticky line of tabs at the top of your
Window, each tab shows the name of a Buffer that has been displayed
in this particular Window.105 There’s also a +-sign at the right that, 105 You can customize which buffers are

displayed in the Tab Line, perhaps, say,
limiting them to a certain Major Mode.

when clicked, pops up a classified GUI menu that allows you to
switch to any other Buffer, thus adding another tab to the bar.

This is obviously a feature for mouse users, but if you’re a keyboard-
only person like me, I suppose you might still want the Tab Line
for its visuals. Note that the Buffers shown in the Tab Line are the
same ones you can navigate through with C-x <C-left> (previous-
buffer) and C-x <C-right> (next-buffer).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Global-Mark-Ring
https://en.wikipedia.org/wiki/Tab_(interface)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Line
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer

use gnu emacs the plain text computing environment 133

You can turn the Tab Line on for any Window with M-x tab-line-

mode. If you want this for all your Windows, say M-x global-tab-

line-mode; you can make this your default by adding this to your Init
File:

(global-tab-line-mode 1)

The Package Manager is full of third-party packages for selecting
Buffers; pretty much any approach any other program or operating
system has used for something similar can be found as an Emacs
package: from a very visual Mac Os Exposé-like switcher, to my
favorite, the very abstract buffer-stack.

Creating Buffers

Buffers are typically created for you, implicitly, by any number of
commands: the file visiting commands, of course, but also by many
of the thousands of other commands: the Help commands create

Help Buffers, for example, and any of the Emacs “applications” like
the File Manager (Dired) or the Web Browser (Eww) create Buffers to
present their user interfaces. Buffers are used for almost everything
in Emacs, and you won’t even be aware of most of them; I have 175 in
my Emacs as I write this.

You can also just create a new Buffer anytime you want. The com-
mand for this is good old C-x b (switch-to-buffer); typically, this
command is used to display a different, existing, Buffer in the current
Window, as described in the previous section. But when switch-

to-buffer prompts you for the Buffer name, if you enter a new,
non-existent, one, it instead creates a brand new, empty, Buffer. This
Buffer will be in fundamental-mode unless your chosen name looks
like a filename with an extension (say, foo.org), in which case the
Major Mode will be determined as described in How a Mode Happens
to Your File. Regardless, there will be no file associated with this new
Buffer.

To Save or Not to Save

When you exit, Emacs will offer to save modified Buffers that are vis-
iting files, so that you don’t lose your work. But non-file Buffers don’t
get this treatment, no matter how much work you may have done in
them!106 You can always use C-x C-w (write-file) to associate a file 106 Of course, Emacs lets you change

this default! See save-some-buffers-

default-predicate.
with such a Buffer after the fact.

It may be tempting to create new non-file Buffers or use the

scratch Buffer just to take some transient notes, but such notes
have a way of surreptitiously becoming important, and you will lose

https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Line
https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Line
https://github.com/clemera/buffer-expose
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands

134 keith waclena

them if you exit without saving them somewhere. Emacs has better
ways for you to take notes.

Buffer Names

This inspires me to mention the fact that every Buffer has a name.
There are no anonymous Buffers. Not only must every Buffer have
a name, but that name must also be unique. When there are natural
name conflicts, Emacs will usually disambiguate the newer Buffer
name for you. Buffers that aren’t visiting a file typically get numeric
suffixes, like *shell*<2> and *shell*<3>, but for files things are
more interesting.

The name of a Buffer that’s visiting a file is typically the base-
name of that file; for example, if you visit /etc/passwd, the Buffer
will be named passwd. Since there could be any number of files
named passwd in various directories, in order for you to be able to
visit more than one of them, Emacs must uniquify the Buffer name.
You can choose from a variety of uniquification algorithms. Using
the default algorithm, if you visit /tmp/passwd, having already vis-
ited /etc/passwd, the new Buffer will be named passwd</tmp>. See
“Uniquify” in the Emacs manual for details.

You can rename Buffers at will with C-x x r (rename-buffer).
Since some applications manage their Buffers by name, renaming
them might break the app! But many, probably most, Buffers are
perfectly safe to rename. While uncommon, you can rename any file-
visiting Buffer; the Buffer name won’t affect the filename. It’s quite
common to rename the Buffers of commands that re-use the same
name. Although help-mode has commands to navigate back and forth
through your history of Help invocations, you might want to rename
a given *Help* Buffer to keep it around and easily accessible.

M-x shell is the opposite: when you run it, if that Buffer already
exists, it simply switches to it (kind of like C-x C-f (find-file);
if you want a second shell, you can first rename the existing Shell
Buffer to whatever you like.107 M-x rename-uniquely will automati- 107 Or you can invoke M-x shell with a

prefix argument and it will prompt for
the new name.

cally rename any Buffer for you, using a numeric suffix.

Asterisks

It’s conventional that non-file-visiting Buffers created by Emacs com-
mands are named with *asterisks*; for example, the Help com-
mands use (and reuse) the Buffer name *Help*, and Emacs starts up
with a *scratch* Buffer. When explicitly creating your own Buffers,
you can observe this convention or not, as you like.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Uniquify
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Help-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell

use gnu emacs the plain text computing environment 135

Hidden Buffers

Unix users are familiar with the utility of dot files: any file basename
that begins with a period is by default excluded from the directory
listing of the ls(1) command. This reduces clutter in a directory list-
ing from files that are always present (like . and .. in any directory,
or configuration files like .bashrc in a home directory). Of course,
you can see these “hidden” files when you need to (by passing the -a

option to ls, for example).
The same concept applies to Buffer names. Many Emacs appli-

cations that present themselves via a Buffer, such as the document
viewer Doc View or the web browser Eww, use hidden Buffers to
manage their state. A hidden Buffer is any Buffer whose name begins
with a space character, and by default, they are not offered for com-
pletion nor listed by the Buffer listing commands. Hidden Buffers are
mainly created by Elisp programmers and you probably don’t want
to use Buffer names that begin with a space for your own purposes.
They’re not really suitable for interactive use; in particular, Undo is
turned off by default in such Buffers.

The Default Directory

In addition to a name, every Buffer has a default directory. This is
analogous to the working directory of a process in Unix. The default
directory of a file-visiting Buffer is the directory where the file was
located. If you’re in a shell in a terminal, and you give a filename to
some command via a relative path, that filename is interpreted relative
to the shell’s current working directory: Emacs works the same way.
If a command prompts you for a filename, the prompt will be preset
to contain the Buffer’s default directory; you can delete or edit it to
name a file in some other directory, of course, but if you completely
delete any directory and just enter a relative path, it will be taken as
relative to the default directory.

If you create a non-file Buffer, its default directory will generally
be inherited from the Buffer you were in when you created it. But
any Emacs command that creates a Buffer is free to set its default
directory to whatever is appropriate.

The default directory is just a buffer-local variable named default-

directory. You can check what it is with M-x pwd, which prints the
value of this variable in the Echo Area,108 and you can change a 108 You could also say C-h v

default-directory.Buffer’s default directory with M-x cd, which sets the variable to
whatever directory you specify. Note that changing the default di-
rectory of a file-visiting Buffer does not change the directory of the
file you’re editing—not even if you re-save the Buffer. It only affects

https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory
https://en.wikipedia.org/wiki/Path_(computing)#Absolute_and_relative_paths
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Names
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Names

136 keith waclena

prompt defaults and the resolution of relative pathnames you give
to commands while you’re in that Buffer. To change the directory
of a file you’re editing, use M-x rename-file or C-x C-w (which is
equivalent to making a new copy of the file).

Reverting Buffers

File-visiting Buffers can be reverted with M-x revert-buffer or
C-x x g (revert-buffer-quick) to make the text in the Buffer match
the text in its file. There are two major reasons for doing this: either
to throw away all the unsaved modifications you’ve made without
undergoing a tedious sequence of Undos (and restore the Buffer’s
text to what’s in the file), or because the file has been changed behind
Emacs’s back by some other process and you want the Buffer to re-
flect this. See Files: Reverting Buffers, Auto-Reverting (Watching Files),
and Files Modified Behind Emacs’s Back for more information.

Many non-file Buffers implementing Emacs applications can also
be reverted; the exact meaning of “revert” in these Buffers depends
on the application. For example, C-x C-b (list-buffers) pops up a
Buffer containing a list of all your Buffers (see Buffer Menus), but if a
new Buffer is created later, the list won’t (for good reasons, IMHO109) 109 One usually doesn’t want a buffer

like this changing on the fly while you
might be trying to do something in it;
it’s at least distracting and might lead
to mistakes. Nonetheless, EIPNIF: you
can have this if you want it by saying
M-x auto-revert-mode.

be automatically updated to show it; reverting the Buffer will do so.
In Major Modes descended from Special Mode, the key g is often
bound to revert-buffer, but check with C-h m (describe-mode) first.

Killing Buffers

There are many ways to delete or, as we say in Emacs, kill Buffers, but
why would you want to? There are two main reasons:

• Each Buffer takes up in memory at least as much space as the file
takes up on disk; when you kill a Buffer, you free up that space
and Emacs has that much more to work with.110 110 Actually, Emacs will return that

memory to the operating system, so
even other processes benefit.• Lots of old Buffers means clutter; more Buffers to ignore in Buffer

listings, more to ignore when doing Buffer-name completion,
more Buffers to search through if you ask Emacs to do so. If you
run Emacs as a long-running process in Server Mode (as I rec-
ommend), you might accumulate many Buffers over the space of
weeks or even months!111 111 During the pandemic of 2020, I used

the Emacs on my desktop at work from
home, via emacsclient over ssh, and
when I finally rebooted my desktop,
that Emacs had been up for 204 days,
2 hours, 48 minutes, and 55 seconds
(according to M-x emacs-uptime).

We’ve already seen the basic command for killing a single Buffer,
by name and with completion: C-x k (kill-buffer); C-x 4 0 (kill-
buffer-and-window) kills the current Buffer and also deletes the Win-
dow that was displaying it; it’s especially useful when popping up

https://www.gnu.org/software/emacs/manual/html_node/emacs/Copying-and-Naming
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/List-Buffers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Revert
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window

use gnu emacs the plain text computing environment 137

hits from a Grep command. There are also several commands to
clean up unneeded Buffers:

M-x kill-some-buffers asks whether or not to kill each Buffer in
your Emacs; it makes it clear whether or not the Buffer is modi-
fied. This command is way too tedious unless you have hardly any
Buffers, and if you have a lot, a sort of highway hypnosis can set in
that might result in you killing a Buffer you didn’t want to.

M-x kill-matching-buffers This command prompts for a Regular
Expression and only asks about the Buffers whose names match it,
so this might be a little bit better.

M-x clean-buffer-list is a totally automatic way to clean up a
lot of Buffers, with no prompting and no questions asked. It will
of course never kill a modified Buffer, but it will instantly get
rid of Buffers that you haven’t looked at in a while (by default, 3

days). It’s highly customizable, so you can define certain Buffers
that it should never clean up; examine M-x customize-group RET

midnight RET. See also Midnight Mode.

I think the best thoughtful (i.e. not totally automatic) way of clean-
ing up Buffers is via one of the Buffer Menu commands below, which
give you a Dired-like interface to the task.

Buffer Menus

C-x <C-left> (previous-buffer) and C-x <C-right> (next-buffer),
along with C-x b (switch-to-buffer) (coupled with a good Com-
pletion framework) will form the vanguard of your Buffer naviga-
tion. But sometimes you’ll need a way to get an overview of all your
Buffers, and some tools to manage them. This is what the Buffer
Menus provide. A Buffer Menu is to Buffers what Dired is to files.

There are three main choices: list-buffers, bs-show, and ibuffer.
The most basic command is C-x C-b (list-buffers); it pops up a

Buffer List Buffer that lists all the Buffers in your emacs, giving,
along with their names, their sizes, Major Modes, and visited file
name (if any):

CRM Buffer Size Mode File

.% passwd 1699 Conf[Colon] /etc/passwd

% *Calendar* 531 Calendar

% *Help* 554 Help

scratch 145 Lisp Interaction

%* *Messages* 305 Messages

https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer
https://en.wikipedia.org/wiki/Highway_hypnosis
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/List-Buffers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Buffer-Menus
https://www.gnu.org/software/emacs/manual/html_node/emacs/Buffer-Menus
https://www.gnu.org/software/emacs/manual/html_node/emacs/List-Buffers

138 keith waclena

The cryptic CRM Column shows the current Buffer (indicated by a
period in the C column), a % under R if the Buffer is read-only, and a *
under M if the Buffer is modified.

This Buffer is in buffer-menu-mode, and if you switch into it, a
number of Buffer-management commands are available. Just move
to anywhere within a Buffer’s line and the special commands will
operate on that Buffer. Some operate immediately, but some only
mark the Buffers and perform the operation when indicated. See
table 6.

Key Action
RET replace Buffer Menu with this buffer
1 like RET C-x 1

o select buffer in Other window
V . . . in view-mode.
C-o display buffer in Other window (without switching)
m mark this buffer for v or M-s a ...

v display this and all marked buffers
u remove all marks from this line
DEL back up a line and remove marks
U remove all marks in the Buffer Menu
M-DEL remove a particular mark from all lines
T Toggle display of only file buffers
S Sort lines by the column that contains Point
{ narrow this column
} widen this column
b Bury the buffer listed on this line
t visit Tags table of this buffer
~ clear modified-flag
% make buffer read-only
s mark for Save upon x

C-k mark for Kill upon x, move down
C-d mark for kill upon x, move up
x eXecute kill or save marks
M-s a C-s Incremental Search in the marked buffers
M-s a C-M-s Isearch for regexp in the marked buffers
M-s a C-o Occur in the marked buffers
g revert (update) the Buffer Menu
q hide the Buffer Menu

Table 6: buffer-menu-mode Commands

bs-show is very similar to list-buffers; it has a very similar com-
mand set112, but is more customizable and, in its default configura- 112 Just different enough to be annoying!

tion, is a bit more colorful. I’d recommend it over list-buffers just
for that reason; you can bind it to C-x C-b with:

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Buffer-Menus
https://www.gnu.org/software/emacs/manual/html_node/emacs/List-Buffers

use gnu emacs the plain text computing environment 139

(global-set-key (kbd "C-x C-b") 'bs-show)

The Buffer Menu that I use is ibuffer. It’s even more colorful
than bs-show, but it has the largest command set and is more like
Dired than the other two.113 It has a more extensive set of marking 113 Though the key bindings are annoy-

ingly dissimilar; I’ve long intended to
sit down and make Ibuffer’s bindings
as close to Dired’s as possible. . .

commands, a much larger, stackable, set of commands to filter the
Buffer Menu (e.g., by Major Mode, by visited directory name, by
size), and a much larger set of sorting commands. It has so many
commands that I won’t attempt to summarize them here; say C-h f

ibuffer-mode.
I recommend it, and I bind it to C-x C-b with:

(global-set-key (kbd "C-x C-b") 'ibuffer)

Note that neither list-buffers nor bs-show will list hidden
Buffers (those starting with a space). ibuffer can do this, however.

Narrowing

Many commands that perform repetitive operations (like Query
Replace) will limit their operation to the active region. Some (like
Keyboard Macros) do not, but these recalcitrant commands can be
convinced to do so by narrowing the Buffer to the Region (whether
active or not). C-x n n (narrow-to-region) hides the parts of the
Buffer outside the region, making them almost completely inaccessi-
ble. After narrowing, you can run any command on the entire Buffer
without worrying that it will affect the hidden parts. Narrowing can
also be useful just to focus your attention on a part of your text, say a
particular paragraph, or a gnarly function, with no distractions.

Once you’ve narrowed, it’s as if the rest of the Buffer is gone. The
Buffer size indicator in the Mode Line will report the size of the nar-
rowed portion as if it’s the entire Buffer, and any displayed line num-
bers will be reset from 1. If you save a narrowed file-visiting Buffer,
you will always save the entire Buffer, including the invisible parts—
don’t worry that you might lose data by saving only the narrowed
part to the file!

The Mode Line will include the word “Narrow” in the paren-
thesized list of Minor Modes (even though narrowing isn’t, strictly
speaking, a Minor Mode). There are a few other giveaways. The
value of Point, which you’ll recall is the offset, in characters, from
the beginning of the Buffer, remains relative to the entire unnarrowed
Buffer. One command that reveals the value of Point is C-x = (what-
cursor-position). Suppose you narrow your 500K Buffer to one
paragraph in the middle of the text; what-cursor-position will show
that Point is something like 254,120 rather than 1. Go ahead and try
it!

https://www.gnu.org/software/emacs/manual/html_node/emacs/Buffer-Menus
https://www.gnu.org/software/emacs/manual/html_node/emacs/Narrowing
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info

140 keith waclena

But wait, first I’d better tell you how to restore your Buffer after
narrowing it! C-x n w (widen) does the job. Point remains where it
was, and all the hidden parts blossom forth again.

If someone new to Emacs accidentally narrows a Buffer, the usual
assumption is that, somehow, much text has mysteriously been lost,
and the reaction is dismay. For this reason, C-x n n (narrow-to-
region) is disabled by default. But it’s a very useful command, and I
recommend you enable it after you’ve tried it a couple of times.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Narrowing
https://www.gnu.org/software/emacs/manual/html_node/emacs/Narrowing
https://www.gnu.org/software/emacs/manual/html_node/emacs/Narrowing

Modes, Major and Minor

Major Mode Minor Modes
Specialization X
Preferences X

The main way Emacs specializes different kinds of text — prose,
programming languages, data file formats — is through Major Modes.
Major Modes typically provide customized fonts, colors, and other
styling; layout (indentation and such); key bindings; templating;
integration with compilers, interpreters, and debuggers; and more.

Every Buffer always has a single Major Mode, and may have zero
or more Minor Modes enabled. While Major Modes implement broad
sets of features suited to a particular kind of text or application (an
application like, say, a web browser), Minor Modes are typically
independent of any particular kind of text, and instead implement
user preferences and features that are generic and could enhance
many or all Major Modes: things like spell check, line numbers, or
folding text.

The Major Mode is, by default, shown in the Mode Line as the first
word in parentheses. If your Buffer is in python-mode, the Mode Line
will show:

(Python)

(the Major Mode indicator may be followed by a list of space-separated
Minor Mode indicators).

Many Major Modes are for particular programming languages,
but they also exist for markup languages (TEX and LATEX, Troff,
HTML, Markdown, Org), config file formats (for INI files, and many
application-specific formats like Apache, Git, Kubernetes, etc), data
file formats (Json, CSV, XML, Turtle (RDF), YAML, BibTex), image
files, PDF files, and more.

An important role for Major Modes is to implement interfaces to
external programs, like version control systems (Git, Mercurial, etc),
databases, shells, Grep, and programming language REPLs; more
Modes implement 100%-Emacs applications like file managers, email
systems, games, and web browsers.

142 keith waclena

At the moment, there are at least 427 more Major Modes available
in the Package Manager, and even more on Github and the like.
Basically, if you’re editing some kind of structured text, there’s an
Emacs Mode to make the editing better.

How a Mode Happens to Your File

When you visit a file, Emacs chooses a Major Mode for you automat-
ically, typically based on a file extension. Files ending in .org will
automatically be in org-mode; files ending in .py will automatically
be in python-mode.

But Major Mode selection is really more complex. Emacs has a
decision tree that proceeds from the file contents, through the file
name, to your chosen overall default. Here’s the complete sequence.

Mode via File-Local Variable

You can explicitly set the Major Mode by including a string like this:

-*- MODE -*-

somewhere on the first non-blank line of the file, where MODE is the
name of the Mode, leaving off the trailing -mode. So this line:

-*- python -*-

will cause Emacs to choose python-mode when it visits the file. Like-
wise:

-*- emacs-lisp -*-

selects emacs-lisp-mode.
The Mode string can be preceded on its line by any text, and fol-

lowed by even more text. This allows you to put the Mode string in a
comment; thus:

/* -*- c -*- */

selects c-mode and

-*- python -*-

selects python-mode.
File local variables, in their full glory, are a concept originated by

Emacs.114 You can set additional variables this way: 114 Dating from 1992 or earlier.

-*- python; python-indent: 4 -*-

and you can also set them at the end of the file, if your language is
particular about the top, or if you just prefer them there (they might
be less distracting).

https://github.com/
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Variables

use gnu emacs the plain text computing environment 143

Mode via Shebang, or Interpreter Directive

If the Major Mode wasn’t chosen due to a file-local variable, Emacs
next looks to see if the file begins with a shebang, or interpreter di-
rective. This is a Unix concept that allows executable text files to be
run as scripts by a variety of programming language interpreters. So
if your file begins with: #!/bin/sh Emacs will select shell-script-
mode. By default, Emacs knows how to map 46 interpreter names to
the right Major Mode; you can customize the variable interpreter-

mode-alist to tweak these choices or add more.
Unix says that the shebang must be the first line of a file, so if you

also want some file-local variables, you’ll need to set them via the
end-of-file syntax.

Mode via Filename

If the Major Mode was chosen neither by a file-local variable nor a
shebang, Emacs next checks to see if the file extension determines
the Mode.115 This is controlled by the variable auto-mode-alist, so 115 Actually, the next step is to see if

the file has a magic number. (This is
the way the Unix file(1) command
identifies files.) There are currently
no magic numbers defined in Emacs
by default; you can add your own to
magic-mode-alist. But see the related
Magic Fallback.

you can override the defaults to suit your preference. Out of the box,
auto-mode-alist encodes over 200 different file extension / Mode
pairings.

This variable actually allows more sophisticated choices than just
the file extension: you can base the choice on the structure of the en-
tire file name, including the directory (so you can set a default Mode
for all the files in a given directory, regardless of their basenames or
extensions), and (as is typically the case in such customizations) you
can even base the choice on the result of a function call.

Mode via Magic Fallback

If the Major Mode has still not been chosen, Emacs now checks
magic-fallback-mode-alist, which examines the content of the
file to determine the Mode. This default value of this variable con-
tains patterns and functions that recognize image formats and make
distinctions about HTML and XML file formats (which can’t easily be
made via file extension).

The Last Resort

Finally, if the Major Mode remains undetermined after this entire
process, the default value of the variable major-mode is used. The
default default (!) is fundamental-mode, the ultra-minimal Major Mode
that does absolutely nothing special.

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Variables
https://en.wikipedia.org/wiki/File_format#Magic_number

144 keith waclena

You can change the default Major Mode to something else, like for
example:

(setq-default major-mode 'text-mode)

after which you’ll get text-mode as your default. (If you’re a pro-
grammer or system administrator — one who edits system files — I
highly recommend keeping fundamental-mode as the default value of
major-mode; any other choice might result in surprising changes to a
file when you save it, without your noticing.116) 116 Typically, changing spaces to tabs or

vice versa.But really there’s one final, ultimate, decision: in the case that
major-mode’s default value is nil, which will only be the case if you
choose to make it so, the Major Mode will be that of the Buffer you
were in before you switched to a new Buffer (by visiting a file, or
creating a new Buffer say by giving C-x b (switch-to-buffer) a
nonexistent Buffer name).

Setting the Mode Explicitly

You can always set the Major Mode of a Buffer explicitly, either be-
cause the usual process came up with fundamental-mode, or chose
the wrong Mode (perhaps due to an unusual or nonexistent file ex-
tension), or just because you prefer an alternative Mode at the mo-
ment.

Conventionally, Major Modes exist as commands named accord-
ing to the pattern major-mode-name-mode, so you can switch to Org
Mode by invoking M-x org-mode or to Emacs Lisp Mode with M-x

emacs-lisp-mode. After switching, there might be a visual change
as the new Mode’s syntax colorization takes effect; for example, af-
ter switching to fundamental-mode, any colorization will disappear,
since fundamental-mode doesn’t do any syntax highlighting (this
is one of the most common manual Mode changes, because since
fundamental-mode does nothing visually to the characters in the file,
you can be sure you’re seeing the precise contents).

To restore Emacs’s choice of Mode, you could reinvoke the Mode’s
function by name, but the simplest way is to say M-x normal-mode.
normal-mode is not a Major Mode, but rather just a function that in-
structs Emacs to go through the entire Major Mode-choosing process
again.

Help for Your Mode

If you want to know what’s up with the Major Mode Emacs has cho-
sen, just say C-h m (describe-mode). The *Help* Buffer will first list
all the enabled Minor Modes (because Major Modes often turn on

https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval
https://www.gnu.org/software/emacs/manual/html_node/emacs/Choosing-Modes
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help

use gnu emacs the plain text computing environment 145

a set of Minor Modes); these are hyperlinked to complete descrip-
tions later in the Buffer. Then the documentation for the Major Mode
will be presented (for some Modes, this is quite extensive), and then
typically a complete list of Major Mode-specific key bindings will be
given (there might only be a couple; for some Modes, like org-mode,
there might be several hundred!). Finally the documentation and key
bindings for all the Minor Modes will be given. This can be a lot of
documentation; for me, the Org Mode *Help* Buffer is over 900 lines
long!

Customizing Modes

It’s very common to want to customize the way a Major Mode117 117 Or a Minor Mode; the principles are
the same.works, and well-written Major Modes (the majority of them!) pro-

vide many ways to do so. You might want to change the default
indentation level or the color of comments or string literals in a pro-
gramming language Mode. You might want to change some of its
key bindings to ones that are more mnemonic or easier to type. You
might want to disable an annoying command that you find yourself
accidentally invoking (I do a lot of this!).

The simplest type of customization is to modify the value of a
user option, i.e. an Emacs variable that’s explicitly intended to be
used to tweak a Mode’s behavior. The easiest way to do this is to
go to a Buffer that has the Major Mode you’re wanting to tweak
and invoke M-x customize-mode; this gathers all of the Mode’s user
options together and you can use the Customize facility to change
them. You can also just set these options in your Init File via Elisp,
e.g.:

(setq python-indent-offset 2)

see User Options. How do you find out what user options exist to
be customized? Browsing the customize-mode Buffer is a good way;
you can also use M-x apropos-user-option with a query like python

indent, and don’t forget to read the Info manual for Modes which
have one.

Customize doesn’t give you a way to change key bindings, so
you’ll need to hack your Init File to do that! See Modifying Key Bind-
ings for instructions.

Finally, you may want to customize a Mode in a manner that never
occurred to the programmer who wrote the Mode, and so there’s no
handy user variable to tweak. A common desire is to turn on several
specific Minor Modes whenever you’re in a given Major Mode: for
example, spell checking. But that’s just one of any number of possi-
ble Minor Modes. The programmer of the Foo Major Mode shouldn’t

https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos

146 keith waclena

try to provide user options like foo-enable-spellcheck because even
though spell checking is a common desire, there’s more than one way
the user might want to do it, and more to the point, there is an un-
limited number of extant and not-yet-written potential Minor Modes
of interest. And you may want to enable a behavior that’s not even a
formal Minor Mode118. 118 Perhaps you want to play a special

sound every time you enable a given
mode. . . Who knows what you might
want to do!

Fortunately, Emacs has a general purpose mechanism to solve
this problem; it’s pervasive and part of what makes Emacs so mal-
leable: Hooks. Hooks exist to provide a way for an action of some
kind to also perform some other arbitrary actions at your behest. Ev-
ery Major and Minor Mode FOO-mode respects a variable FOO-mode-

hook which is intended to contain a list of functions. Each function
in this list is executed, in order, after the Mode is done initializing
the Buffer. You simply add functions to this list; the functions can do
whatever you want.

So, if you want spell checking in Org Mode, and you prefer
flyspell-mode to ispell-minor-mode, you can add this line to your
Init File:

(add-hook 'org-mode-hook 'flyspell-mode)

If you don’t generally want line numbers turned on, but you do want
them in python-mode, add this line:

(add-hook 'python-mode-hook 'linum-mode)

As the name implies, the add-hook function adds an additional func-
tion to a hook variable, at the front of the list. add-hook is clever and
only adds the function if it isn’t already present (that way it doesn’t
run twice).

flyspell-mode and linum-mode are both Minor Modes, and Minor
Modes are designed to be easy to add to hooks. But you can add
arbitrary functions as long as they make sense. Want to give yourself
a little encouragement whenever you open an Elisp Buffer?

(add-hook 'emacs-lisp-mode-hook

(lambda () (message "Don't fear the parentheses!")))

More complex Modes will define more than just the default after-
Mode-initialization hook, and will run these hooks when certain
actions occur. org-mode, for example, an especially complex Major
Mode, has 80 hooks.

Hooks are not really just for Modes. There are many defined for
Emacs actions that occur “globally” — hooks for when Emacs starts
up and when it exits, for example — and individual functions de-
fined outside of any major Mode can have their own hooks so that
you can customize their behavior.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Hooks

use gnu emacs the plain text computing environment 147

Derived Modes and Inheritance

Almost all Major Modes are derived from some preexisting Mode
that’s in some way similar. This way, the new Mode inherits behavior
from the parent (which may have inherited behavior from its parent,
and so on). The new Mode inherits the parent’s keybindings, syntax
table, abbreviations, and Major Mode hook, and can then change
anything it’s inherited, or not. Note that the new Mode’s hook will
run after all the inherited Mode hooks. So if someone invents a new
variant of the Lisp programming language, say “Neolisp”, a new
Emacs neolisp-mode might well be derived from lisp-mode.

There are five Major Modes that are commonly used as parent
Modes: text-mode, for a new Mode that deals with something sim-
ilar to natural-language prose; prog-mode, for new programming
language Modes; special-mode, for Modes that let you view data
more than they let you edit it (this includes most applications);
tabulated-list-mode, for Modes that present a view of data in
sortable columns (and which is itself derived from special-mode);
and finally, fundamental-mode, the most minimal Mode of all. Note
that prog-mode, special-mode, and tabulated-list-mode exist only
to be derived from, whereas text-mode and fundamental-mode are
themselves often used as Major Modes.

Basic Major Modes

Here are a few basic Major Modes that can be useful when Emacs
doesn’t have a better idea for your text.

fundamental-mode

This is the basic Mode in reference to which many other Modes are
defined. It’s perfectly fine for editing any kind of text, it just doesn’t
provide any special features: it has no Mode-specific key bindings
and no colors to distinguish different kinds of text. Every character in
the Buffer looks exactly like itself.

It’s occasionally useful to turn off the fancy features of a special-
ized Mode by switching a Buffer into fundamental-mode; see Setting
the Mode Explicitly.

text-mode

For editing plain, unspecialized, natural language prose, i.e. blank-
line separated paragraphs consisting of sentences. This is the Mode
Agatha Christie would have used for her books, if she’d had Emacs
instead of her typewriter. Quite minimal.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Mode

148 keith waclena

outline-mode

You can add a little more structure to your prose by using outline-

mode (see “Outline Mode” in the Emacs manual). Lines that start with
an asterisk form the nested headlines of an outline, and you can fold
(hide) and unfold the text of the outline levels, easily reorder them
without cutting and pasting, etc.

* My Header

Some text.

** A Nested Sub-Header

* Next Header

In recent years, outline-mode has been largely subsumed under
Org Mode, which includes all its features, with friendlier key bind-
ings, and adds so much more. In my opinion you should skip over
outline-mode and go direct to Org.

Programming Language Modes

As of version 28.2, Emacs ships with Major Modes for at least Ada,
Assembly Language, AWK, C, C++, Common Lisp, Emacs Lisp, For-
tran, Icon, Java, Javascript, M4, Makefiles, Metafont, Modula2, Object
Pascal, Objective-C, Octave, Pascal, Perl, Pike, PostScript, Prolog,
Python, Ruby, Scheme, Shell (Bourne-, C-shell-, and rc-derived fla-
vors), Simula, SQL, Tcl, Verilog, and VHDL.

In such a Mode, Emacs does all the sorts of things you expect of
an integrated development environment (IDE): syntax highlighting
to colorize and fontify the different syntactic elements of the code,
specialize textual objects for the language (so Emacs’s symbols match
the languages identifiers, and its functions match the languages func-
tion definitions), balance parentheses, complete identifiers, enable
commands to insert and delete comments, indent and dedent the
lines appropriately, show documentation of built-in functions, jump
from function and identifier uses to their definitions, expand source
code templates, send function definitions to the language interpreter
(REPL), interact with a debugger, compile code, and jump from com-
piler error messages to the locations in question.

Some of the common features of IDE’s are handled by indepen-
dent, orthogonal Minor Modes. On-the-fly syntax and style checking
(linting) is often handled by Flycheck119 or for languages that use 119 To be preferred over the older, built-

in, Flymake.the Language Server Protocol, Eglot or lsp-mode. Spellcheck in com-
ments is handled by flyspell-prog-mode. Project navigation is the
domain of Projects or the much fancier Projectile. Version control has
its own chapter, as do build tools, searching, and debugging.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Outline-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Outline-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Outline-Mode
http://www.flycheck.org
https://github.com/joaotavora/eglot
https://github.com/emacs-lsp/lsp-mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Projects
https://projectile.mx/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Debuggers

use gnu emacs the plain text computing environment 149

Application Modes

Many Major Modes, descended from special-mode, exist to im-
plement applications. There are innumerable examples: Dired the
file manager; the Grep family; Eww, the web browser; Gnus, the
mail user agent; VC, the version control system. The more elaborate
applications may really be a complex of several Major Modes; the
Gnus “application” consists of 16 Modes. See Part III: NEVER LEAVE
EMACS: APPLICATIONS for details on many of these.

Minor Modes

Minor Modes work like mix-ins: enable as many as you like. Emacs
turns on a dozen by default to implement things like the automatic
handling of compressed or encrypted files, and I typically have a
couple dozen other Minor Modes enabled too. At the moment, there
are at least 155 more Minor Modes available in the Package Manager,
and even more on Github and the like.

Minor Modes come in two flavors, global and Buffer Local, and
some come in both. When you turn on a Buffer Local Minor Mode,
it’s only enabled in the current Buffer; if you want it on in another
Buffer too, you need to turn it on there separately. This is why we of-
ten add Minor Modes to a Major Mode’s startup hook: so that they’re
automatically turned on in all Buffers in that Major Mode. But Minor
Modes that are likely to be generally useful in any Major Mode of-
ten come in a global flavor; when you turn on a global Minor Mode,
it’ll be on in every Buffer that’s created. We’ve seen how you turn
on line-numbers in a Buffer with M-x linum-mode; but there’s also
M-x global-linum-mode. It’s up to the programmer who implements
a Minor Mode to decide whether to provide a global command, a
Buffer Local command, or both.

Some Minor Modes will be listed in the parentheses of the Mode
Line, after the Major Mode. Right now, my Mode Line shows:

(Org Ind Fly PgLn NoMouse! Fill)

org-mode is the Major Mode and all the rest are Minor Modes. Minor
Modes may shorten their Mode Line indicator120 dramatically (“Ind” 120 Technically called a “lighter”.

above is org-indent-mode), and some choose to provide no indicator
at all (global ones tend to use no indicator). Minor Modes are used
so heavily nowadays they can take up a lot of Mode Line space. Each
of these indicators provides various actions for mouse clicks; see the
Mode Line chapter.

We’ve seen how to add Minor Modes to hooks, but you can also
turn them on and off manually. Any Minor Mode command, like

https://www.gnu.org/software/emacs/manual/html_node/emacs/Minor-Modes
https://github.com/

150 keith waclena

M-x flyspell-mode, will toggle that Mode: if it’s currently off, it’ll
be turned on, and vice versa. (This is different from Major Mode
commands, which only turn the Mode on; since there’s always one
and only one Major Mode in a Buffer, you can’t simply turn it off:
all you can do is turn on (and thus replace it with) a different one.)
Global Minor Modes work the same way, affecting all Buffers. The
only practical way to turn on Buffer Local Minor Modes in your Init
File is via hooks, but you can directly turn global Modes on in your
Init File like, for example:

(global-linum-mode)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling

Application Buffers

Broadly speaking, there are two kinds of Buffers in Emacs: those that
are visiting files, and those that aren’t. In file-visiting Buffers, we are
editing (or at least viewing) the contents of a file.

Non-file-visiting Buffers can be loosely subdivided into two fur-
ther types. The first is temporary Buffers. When you ask Emacs to
display some information with a command like M-x list-colors-

display or M-x calendar, the results are displayed in temporary
Buffers. Of course, you can create a brand-new, empty, non-file-
visiting Buffer as simply as C-x b (switch-to-buffer) NEWNAME.
You might even scribble notes in it, or use it to gather text from other
buffers for editing. Such Buffers are transitory and thus unimportant:
if one becomes important to you, you save it to a file with C-x C-s

(save-buffer): now it’s a file-visiting Buffer.
The second type of non-file-visiting Buffer is what I’ll call Emacs

Applications: Buffers that implement the user interfaces of special
purpose programs: Buffers that you interact with. Such Applications
include file managers, web browsers, shells and terminals, version
control programs, mail user agents, games, and much more.

As I write this, my Emacs has 59 non-hidden Buffers, and 34 of
them, the majority, are Applications: I would say that proportion is
completely typical. Application Buffers are what make Emacs a Lisp
Machine: a plain-text computing environment. You could turn that
around and say that Application Buffers exist because Emacs is a Lisp
Machine: the fact that it’s so readily programmable has resulted in
people using it to create so many Applications.

We’ve already discussed a few Applications without emphasiz-
ing it: the Help, Apropos, and Info subsystems; and the Minibuffer.
These Applications, and many more, exist as user interfaces to Emacs
itself, but most, as we’ll see soon, are Emacs front-ends to your com-
puter, to the network (and the web), and to Unix command-line ap-
plications. And some are completely stand-alone Applications, rather
than front-ends to anything else (for example: the Calculator, Calen-
dar, and various Games and Amusements).

(You can also think of the fancier file-visiting Major Modes as ap-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Colors
https://www.gnu.org/software/emacs/manual/html_node/emacs/Colors
https://www.gnu.org/software/emacs/manual/html_node/emacs/Calendar/Diary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands

152 keith waclena

plications: IDE’s for programming languages, document viewers,
and the like; in a Lisp Machine, it’s really hard to make these distinc-
tions.)

Every Application is unique, but most of them start out inheriting
behavior from a Major Mode called special-mode. As a result, lots of
Applications share a certain amount of behavior and key bindings,
which I’ll discuss briefly here.

But first and foremost, an Application Buffer is just that: a Buffer.
Most of what you’ve learned about Buffers applies to Applications.
Of course, there will be differences, but in general in any Application
you already know things like:

1. how to navigate within it (use the motion and search commands)

2. how to copy text (or data) from it (just select text and use M-w

(kill-ring-save))

3. how to get help about it (C-h m (describe-mode))

4. how to switch between Applications (just switch Buffers)

5. how to kill an Application (C-x k (kill-buffer))

This is one of the advantages of Emacs as a computing environ-
ment: you have less to learn because you already know these things.

Application Buffers start out and almost always remain read-only,
and inherit the following key bindings from special-mode (see Table
7), but remember that any Application will add more bindings, and
very often change some of the inherited ones, in the name of usabil-
ity. Almost all special-mode commands are just handy shorthands
for commands you already know, shown in the “Also” column.

Key Also Action
SPC C-v scroll forward
DEL, S-SPC M-v scroll backward
< M-< go to beginning-of-buffer
> M-> go to end-of-buffer
- C-u - give next command a negative arg
0. . . 9 C-u 0 ... give next command a numeric arg
?, h C-h m show help for mode
g C-x x g revert the buffer
q C-x 0 hide the Application window

Table 7: special-mode Key Bindings

Note that most Applications don’t have a command to stop or ter-
minate them; you can just switch away from their Window (special-
mode’s q command is an easy way) and never come back. As usual if,
you want to clean up, you can just kill the Application’s buffer.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Kill-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer

Windows

Figure 14: Emacs Data Structures

Legend:

+ One or more
1 Exactly one
1? One or none

When Emacs starts up, it presents a Frame containing a single
Window. This Window displays a Buffer, and has its own Point. Op-
tionally, a Window (almost always) has a Mode Line, and (less fre-
quently) any of a Header Line, a left Fringe and a Right Fringe; see
Figure 15.

Figure 15: The Parts of a Window

The Frame can be tiled into multiple Windows in a rectangular
grid; that is, any Window can be recursively subdivided into more
Windows, horizontally or vertically; see Figure 16.

At any moment, one Window is the distinguished selected Win-
dow121; most editing commands, including self-inserting commands, 121 Note the solid block cursor of the

selected window versus the hollow
cursors of the the others in Figure 16.

take effect in the Buffer of the selected Window.
Different Windows may display the same Buffer122, and they don’t

122 All the windows in Figure 16 are
displaying the same buffer.

154 keith waclena

Figure 16: Tiling Windows

need to display the exact same part of the Buffer: one could display
the beginning of the Buffer while another displays the end, and there
may or may not be any overlap. If you can see the same part of the
Buffer in two Windows, and you modify the text there, you will see
the modifications in both Windows. Since each Window has its own
Point, you can move and scroll independently in different Windows
displaying the same buffer.

Splitting Windows

Since it’s impossible to have a Frame with no Windows, there’s no
command to create a Window out of thin air. If you want a new
Window, you have to pick an existing Window; switch to it, if it’s
not the selected Window; and split it. We’ve already discussed this in
Basic Commands to Manipulate Windows. The fundamental commands
are C-x 2 (split-window-below) and C-x 3 (split-window-right).

Deleting Windows

There are two basic commands for deleting Windows: C-x 0 (delete-
window) and C-x 1 (delete-other-windows): in other words, you ei-
ther delete this, the selected, Window, keeping all the rest, or you
delete all the other Windows, keeping only this one.

M-x delete-windows-on prompts for the name of a buffer and
deletes all the Windows that happen to be displaying it.

None of these three commands in any way affect the buffer being
displayed: in particular, they do not kill the buffer.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window

use gnu emacs the plain text computing environment 155

Switching Windows

To “switch Windows” means to change the selected Window, without
necessarily changing the number or layout of the Windows. Mouse
users can switch Windows by just clicking anywhere in another one.
For those of us that prefer the keyboard, the most basic command
to change the selected Window is C-x o (other-window), which
switches to the Other Window; repeated invocations cycle through
all the Windows in the current Frame.

Which Window is the “other” one? Simple: it’s the next Window
in a pre-order, depth-first traversal of the Window tree arranged in a
cyclic ring! It’s a little hard to express in a less-nerdy manner, but if
your Window configuration were that in Figure 17, and the selected
Window was the Window labeled S (for selected), then the Other
Window is Window 1, and repeating C-x o would cycle through the
Windows in numeric order, returning to Window S after Window 6.

Figure 17: The Mysterious Other
Window

C-x o is fine when you have only two Windows (a very common
configuration), and okay for three, but after that it’s frankly kind of
tedious and if you overshoot, you have to circle all the way around
again!123 123 Well, you can back up by giving C-x

o a negative prefix argument as with
C-u - C-x o. . .

Optional packages to the rescue! I use the windmove package,
which essentially gives you four new directional versions of C-x
o: switch to the Window to the right, the left, the one above, and
the one below. By default these are on the shifted arrow keys. So
in Figure 17, if you’re at S and want to switch to 5, you can just
say <S-right> <S-right> <S-right> (or take another route, like
<S-down> <S-down> <S-right>) rather than six C-x o’s. windmove is
not so much about minimizing the keystrokes as making them more
direct and easy to think about.

Another package that’s well-liked is Oleh Krehel’s ace-window,
which gives you one new function, which you would probably bind
to C-x o; when executed, the Windows all display a transient label
in their upper-left-hand corners—by default a digit—and you just
type the label of the Window to which you want to switch. That’s

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window

156 keith waclena

three keystrokes to switch to any Window, regardless of how many
Windows are in your frame. It’s also kind of visually sexy.

You can choose between either of these, or use both, or search the
Packages for many other possible solutions. Here’s a recommended
Init File snippet that sets up windmove:

Init File
(unless (package-installed-p 'windmove)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'windmove)))

;; <S-{left,right,up,down}> switches windows

(with-demoted-errors "%s" (windmove-default-keybindings))

If you want ace-window, replace or supplement the snippet above
with this one; feel free to choose a different keystroke if you want to
preserve C-x o.

(unless (package-installed-p 'ace-window)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'ace-window)))

(global-set-key (kbd "C-x o") 'ace-window)

Finally, there are of course innumerable commands that have the
side-effect of switching Windows. I’ll just mention here the C-x 4

family of commands that switch to the Other Window and then do
something in it; these commands are great when you can think just
one step ahead, knowing not only that you want to switch Windows
but what you intend to do when you get there; see Table 8. (See
KIlling Buffers for C-x 4 0, which I think is more of a buffer-killing
command.)

Key Action in Other Window
C-x 4 C-f Find a file
C-x 4 f . . . the same
C-x 4 r . . . the same, but read-only
C-x 4 b switch to a different Buffer (with completion)
C-x 4 C-o . . . the same
C-x 4 d open Dired on some directory
C-x 4 C-j Jump to this buffer’s directory in dired
C-x 4 m compose an email
C-x 4 . find the definition of the identifier at Point
C-x 4 a find ChangeLog file and Add an entry

Table 8: The C-x 4 Family of Other-
Window Commands

use gnu emacs the plain text computing environment 157

Window Configurations

Often, working in Emacs consists of a fugue-like state of rapidly and
almost automatically switching from Buffer to Buffer, with Windows
coming and going, as you multitask between, say, authoring, coding,
doing email, managing files, and browsing the web. But sometimes
you need an exact configuration of Windows and Buffers to stick
around (for example, see Figure 49). In this case, a popped-up Win-
dow showing *Help* or an email can be an irritant if it means you
have to manually restore your Window Configuration.

There are several facilities to cope with this. The oldest is to use
a Register: set up your Windows and Buffers exactly as you want
them and then store that configuration in a register with C-x r w

(window-configuration-to-register). It will prompt you for a
single-character Register name; pick a (preferably) mnemonic letter.
Now, after the usual vicissitudes of the day—popped-up Calendars,
Shells, and Web Browsers—have messed-up your beautiful layout,
just restore it with C-x r j (jump-to-register), which will prompt
for the Register name you’ve used.

To be precise, a Window Configuration records the exact sizes
and relative positions of all the Windows in the current Frame, and
exactly which Buffer was displayed in each Window, and what por-
tion of the Buffer was visible. (You can also save and restore all the
Window Configurations in all your Frames in one go; see Frames.)

Using Registers requires a little forethought, but it does guarantee
perfect restoration of your layout. A more on-the-fly if less precise
method is to use Winner Mode. This is a global Minor Mode that
essentially allows you to Undo Window configuration changes. So
when your carefully-arranged layout is messed up because you had
to send that email, and needed to get help while doing it, just use
C-c <C-left> (winner-undo) (perhaps repeated a few times) until you
get your configuration back. If you overshoot, you can undo the undo
with C-c <C-right> (winner-redo).

I use Winner Mode all day long and consider it essential. I recom-
mend this Init File snippet (the bindings I describe are my own more
felicitous versions of the defaults):

Init File
(winner-mode 1) ; undo window config changes

;; add more felicitous bindings

(define-key winner-mode-map [(control c) (control left)] 'winner-undo)

(define-key winner-mode-map [(control c) (control right)] 'winner-redo)

There are of course other third-party Packages that deal with
Window configurations; I might mention the Hyperbole package that
does that (and also many other things).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Configuration-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Window-Convenience
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

158 keith waclena

The Tab Bar

Another way to manage Window Configurations is via the very new
Tab Bar. Not to be confused with the Tab Line, the Tab Bar is a Frame-
specific set of different transient Window Configurations.

Really, I think the Tab Bar is best thought of as a task-based desk-
top organizational framework. Many people use distinct window
manager “desktops” or “tabs” to separate their applications this
way: you’ve got your email application and its many windows in one
desktop, your game’s windows in another, your word processor in a
third, and maybe your web browser in a fourth.

The Emacs way is to do all (or most) of these activities in Emacs,
and the Tab Bar gives you that same kind of organization. A given
“task” is not so much a precise, unchanging Window configuration,
but rather the set of Windows and buffers as you were last using
them when you were working on that task. The Tab Bar lets you
switch between tasks rather than preserving precise Window configu-
rations.

Before the introduction of the Tab Bar, people would often use a
dedicated Frame for each “task” or “desktop”. The Tab Bar lets you
do it in one Frame.

Note the differences between a Tab and a Window config in a
Register:

• Tabs have long names, while Register names are restricted to sin-
gle characters.

• The set of available configurations is (by default) visible in a Tab
Bar at the top of the Frame, while the Register config is hidden
away.

• The configuration of Windows and Buffers in a Tab can be changed
as you work, whereas a Register config can only be created from
whole cloth once and then restored, precisely, many times.

Turn on the Tab Bar with M-x tab-bar-mode; this is a global Mi-
nor Mode and so the Tab Bar will be active in all current and future
Frames. When you enable the Mode, a single configuration will be
created, named for the current buffer. You can change the configura-
tion at will: split Windows and change buffers all you like. So far it
doesn’t seem any different from not using tab-bar-mode.

Suppose you’ve laid out a nice configuration for editing your
book, but now you want to read your email for a while. Since this
is a distinct task that will implicitly use a different set of Windows
and buffers, you should create a new config with C-x t 2 (tab-new)
(or use your mouse to click the right-hand + sign in the Tab Bar).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Bars
https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Bars
https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Bars

use gnu emacs the plain text computing environment 159

Now, in this new, second, config (which you’ll notice has popped
up in the Frame’s Tab Bar), you can open your mailer and read and
compose emails. To get back to your book, just click on the book-tab,
or switch configs with one of the tab-switching commands in Table
9: your Windows and buffers are restored to the way they were right
before you started reading mail. You can now switch back and forth
between tasks, or add a new task when needed.

Key Action
C-x t 2 create a 2nd (really, a new) tab
C-x t C-f . . . by Finding a File
C-x t f . . . (the same)
C-x t b . . . by switching to a Buffer
C-x t d . . . by Dired
C-x t o switch to the Other (next) tab
C-x t RET . . . by name (with completion)
C-x t 0 zero (delete) this tab
C-x t 1 make this tab the only 1 (delete all others)
C-x t r Rename this tab
C-x t m Move this tab to the right

Table 9: The C-x t Family of Tab Bar
Commands

A Register configuration has one advantage that a Tab Bar config
doesn’t have: a Register config is immutable. You’ll note that while
you’re in a given Tab, you can change the Windows, buffers and
their visual relationship at will, so once you’ve laid out a precise
configuration in your Tab, you may still want to store it in a Register
so you can get it back, or use Winner Mode to undo config changes.

If you use desktop-save-mode to save and restore the state of your
Emacs between sessions, using tab-bar-mode will result in all your
Tabs being restored as well.

I must admit that before writing this section, I was completely
confused about the Tab Bar and the Tab Line. So what is the differ-
ence between them?

• There’s one Tab Bar per Frame, but there’s one Tab Line per Win-
dow

• Each tab in the Tab Bar is a (fluid) named Window configuration,
whereas each tab in the Tab Line is a Buffer that you’ve displayed
in the current Window.

Tweaking Window Sizes

Speaking of Window configurations with precise layouts, well, how
exactly do you arrive at those precise Window sizes?

160 keith waclena

Mouse users can just click and drag with mouse button 1 on a
Mode Line to resize a Window in the vertical axis (that is, make a
Window taller or shorter), or on the Window divider line between
two side-by-side Windows to make a Window narrower or wider. Of
course, to make one Window taller or wider, Emacs will have to steal
space from a neighboring Window (because tiling). And note that
when clicking in a Mode Line, you need to avoid clicking on any of
the Mode Line components that have their own response to mouse
clicks—most printed text or graphics in the Mode Line reacts to
mouse clicks. Find a spot (typically blanks) where the mouse cursor
changes to a double-headed arrow before clicking.

For us mouse avoiders, there are key bindings that achieve the
same effects; see Table 10.

Key Action
C-x ^ make selected window one line taller
C-x } make selected window one character wider
C-x { make selected window one character narrower
C-x - shrink this window if its buffer doesn’t need so many lines
C-x + make all windows the same height (balance windows)

Table 10: Window Resizing Commands

The first three commands in Table 10 can take a positive numeric
argument N to operate N lines (or characters) at a time, and can take
a negative arg to operate in the opposite direction. But fiddling with
Window sizes is tricky and when you want to, say, make a Window
wider, usually a precise number of characters doesn’t immediately
jump to mind such that you efficiently utter something like C-u 17

C-x }. You really want to repeatedly invoke C-x }, perhaps with
your keyboard’s auto-repeat, until it looks exactly right. But these
two-stroke bindings are infelicitous and can’t be autorepeated, so I
recommend the following felicitous bindings (unassigned in a stock
Emacs) for your Init File:

Init File
(global-set-key (kbd "C-{") 'shrink-window-horizontally)

(global-set-key (kbd "C-}") 'enlarge-window-horizontally)

(global-set-key (kbd "C-^") 'enlarge-window)

The windsize package defines four mnemonic key bindings on the
control-shifted arrow keys which by default resize by 8 columns or 4

rows per keystroke; I include these in the Init File:
Init File

(require 'windsize)

(windsize-default-keybindings) # resize windows on C-S-<left> etc

Finally, C-x - (shrink-window-if-larger-than-buffer) is very
handy when you’re working in a buffer that only has a few lines in it,

https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window

use gnu emacs the plain text computing environment 161

but whose Window eats up 50% of your screen real estate, and C-x +

(balance-windows) divides all the Frame-space evenly between all the
Windows.

Vertical Scrolling

Even though there are often better ways to move, if you just need to
move one character forward, nothing beats C-f (forward-char) or
<right> (right-char). On the other hand, if you know you need to
move somewhere, but don’t really know exactly where, nothing beats
scrolling for an overview of your text.

We’ve already met C-v, M-v, and C-M-v in an earlier chapter, and
you can of course also use the scroll bars and the mouse wheel.

Remember that moving means “moving Point”, i.e. changing your
position in the buffer. Strictly speaking, scrolling isn’t a way of mov-
ing Point: it’s a way of adjusting the portion of the buffer’s text that’s
visible in a Window; but this often has the side-effect of moving Point.

Here we have a 10-line Window. Imagine that the buffer is hun-
dreds of lines larger than the Window. The Window line numbers are
at the left, and the buffer line numbers are to the right of them.

The word “FOO” is in the middle of buffer line 655, which hap-
pens to be shown in Window line 5 at the moment, and Point, in-
dicated by |, is at the beginning of “FOO”. (Lines 650 and 661, and
many more, are outside the Window.)

650 Lorem ipsum dolor sit amet, consectetuer adipiscing elit

+---+

| 1 | 651 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 2 | 652 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 3 | 653 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 4 | 654 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 5 | 655 | Lorem ipsum dolor sit |FOO, consectetuer adipiscing elit |

| 6 | 656 | Lorem ipsum dolor sit BAR, consectetuer adipiscing elit |

| 7 | 657 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 8 | 658 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 9 | 659 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 10 | 660 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

+---+

661 Lorem ipsum dolor sit amet, consectetuer adipiscing elit

If we scroll up by 4 lines, say with C-u 4 C-v, the line with FOO will
now be displayed in Window line 1; Point remains at the beginning
of “FOO”.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

162 keith waclena

654 Lorem ipsum dolor sit amet, consectetuer adipiscing elit

+---+

| 1 | 655 | Lorem ipsum dolor sit |FOO, consectetuer adipiscing elit |

| 2 | 656 | Lorem ipsum dolor sit BAR, consectetuer adipiscing elit |

| 3 | 657 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 4 | 658 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 5 | 659 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 6 | 660 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 7 | 661 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 8 | 662 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 9 | 663 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

| 10 | 664 | Lorem ipsum dolor sit amet, consectetuer adipiscing elit |

+---+

665 Lorem ipsum dolor sit amet, consectetuer adipiscing elit

This is why Emacs calls C-v “scroll-up-command”, rather than
“scroll-down”: the buffer lines have moved up in the Window. It’s
also true that more buffer lines are suddenly visible at the bottom of
the Window (lines 661-664).

So scrolling isn’t really moving: the position of Point has not
changed! However, it is a rule that Point is always visible in the Win-
dow, so if we were to scroll up one more line, Point would have to
move to remain in the Window.

If we scroll by large amounts — bigger than the size of the Win-
dow, say by a screen-full at a time — then Point will be moving every
time. But the motion of Point is really just a side-effect.

Conversely, if you move Point off the top or bottom of the Window
with a true Point-moving command like C-p (previous-line) or C-n

(next-line), because Point must remain visible, Emacs will scroll the
Window to achieve this! By how much will it scroll? The default is
to scroll Point to the center of the Window, which I hate – I think it
makes scrolling jumpy and my eyes lose track of Point.

Different people simply don’t agree about these things, but Emacs
being Emacs, all aspects of scrolling can be fine-tuned with a variety
of variables. I use:

(setq scroll-conservatively 100000)

The result of this (just trust me. . .) is that the Window only scrolls
by one line if I move one line off the top or bottom. (If you read the
documentation for that variable, the number will make sense.)

Where in the Window is Point?

Sometimes you want Point to stay where it is in the buffer (in front
of some given word, perhaps), but you want it to be on some other
Window-line. If Point is on the bottom line of the Window, you might
want to center it so that you can see as many lines before and after it
as possible.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 163

You can do that by fiddling with numeric arguments for C-v and
M-v, but as usual there are commands to make that easier. C-l

(recenter-top-bottom) will scroll the Window so that Point is in
the center line; immediately repeating C-l will scroll Point’s line to
be at the top of the Window; one more C-l scrolls it to the bottom;
yet one more starts the cycle over124. I use this command constantly; 124 You can fine-tune these positions

by tweaking the variable recenter-

positions.
so much nicer than vaguely yanking the scroll bar.

Conversely125, you might want to really move Point to a particular, 125 With Emacs, there’s always a “con-
versely”. . .different, Window line, without scrolling the lines at all. M-r (move-

to-window-line-top-bottom) does that, and it cycles through the
same positions that C-l does when you repeat it; first Point jumps to
the line at the center, then the top and finally the bottom: the visible
lines remain the same, in the same positions.

These are easy to understand if you just try them out: pull up
some text that’s significantly bigger than your Window (C-h C-c

(describe-copying) will probably do), scroll a few screenfulls in with
two or three C-v’s, and then type several C-l’s in a row until you get
the idea. Now do the same with a sequence of M-r’s.

Finally, new to me as I write this paragraph in 2021
126 is C-M-l 126 Even though it’s been around since

1993. . .(reposition-window), which recenters the Window heuristically,
trying to bring useful information into the Window, like a complete
paragraph or a complete function definition.

The Display of Lines

While the size of a Buffer is effectively unlimited (2.3 exabytes), the
size of a Window definitely is not. It depends on the resolution of
your display, your chosen font size, the current size of your Frame,
and the sizes of any other Windows in that Frame. Scrolling copes
well for buffers with many more lines than the Window has room
for, but (in my opinion) is basically awful for lines longer than the
Window is wide.

Continuation Lines

By default, horizontal scrolling is completely avoided by virtue of
continuation lines. When the actual length of a line in a buffer—i.e.,
the number of characters between the beginning of the line and a
newline character—is longer than the Window width, Emacs displays
it wrapped on as many Window lines as it requires. So there are two
kinds of lines: actual lines (determined by the content of the buffer),
which Emacs calls logical lines, and the screen lines needed to display
the logical line in full. Any extra screen lines needed for this are
called continuation lines.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Recentering
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Help-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Recentering
https://www.gnu.org/software/emacs/manual/html_node/emacs/Continuation-Lines

164 keith waclena

Continuation lines imply some ambiguity: the additional screen
line-breaks would masquerade as actual newlines in the buffer text.
To solve this problem, the continuation line-breaks are indicated by
bent arrows in the right and left Fringes of the Window127; if you 127 In a non-graphical terminal, which

can’t display fringes, a backslash
character (\) is used.

have linum-mode turned on, you’ll note that the continuation lines
don’t get line numbers (linum-mode numbers logical lines); see Figure
18.

Figure 18: Continuation Lines

All the line-motion commands work in terms of logical lines, so
getting to the last word in a logical line continued into many screen
lines (say from the cursor in Figure 18 to the word “estates”) re-
quires using horizontal motion commands (or, of course, Incremental
Search).

Line Truncation

The occasional continuation line is no hardship, and if you have
many, it may be because your Window is only temporarily too skinny
and will soon be wider. But when every line in the buffer is too long
to fit (as in Figure 18), it can really be annoying. I use a tiling win-
dow manager and as result, my Emacs frame can often be somewhat
narrow, and Emacs itself tiles its Windows, so every C-x 3 (split-
window-right) can mean more continuation lines. What to do?

My solution is to use line truncation instead of continuation lines,
via this Init File snippet:

(setq-default truncate-lines t) ; good for tiling window managers

With this setting, there are no continuation lines: the line is (visually)
truncated at the right-hand Window boundary and the right fringe
shows a right-pointing arrow to indicate that there’s more of the
logical line off to the right. This avoids the disconcerting continuation
lines, but at the cost of horizontal scrolling.

https://en.wikipedia.org/wiki/Tiling_window_manager
https://en.wikipedia.org/wiki/Tiling_window_manager
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Line-Truncation

use gnu emacs the plain text computing environment 165

Since I hinted that I hate horizontal scrolling (especially yank-
ing back and forth on a horizontal scroll bar), this may sound like a
counterintuitive choice, but of course, if you simply move Point into
the off-screen part of a truncated line, Emacs scrolls automatically;
remember, Point is always visible in the Window, so this means any-
thing that moves Point, like searching, causes automatic horizontal
scrolling as needed.

Still, even automatic horizontal scrolling can be annoying, but
thanks to Winner Mode, which lets me use C-x 1 (delete-other-
windows) to get a wide Window and with one keystroke restore my
previous Window configuration, truncated-lines work for me.128 128 I’m also an old Unix programmer-

type, and most of the files I work with
have short lines.

See Figure 19 (and notice how many more (partial) lines are visible).

Figure 19: Truncated Lines

You probably don’t want truncated lines as a global default the
way I have it, but you can switch any Window back and forth be-
tween continuation and truncated with M-x toggle-truncate-lines.

Visual Line Mode

Neither truncated lines nor continuation lines are suitable for actually
working with (i.e., editing or reading) the modern style of single-line
paragraphs, or any other bunch of really long lines. For this purpose,
you want Visual Line Mode.

Visual Line Mode wraps your lines into continuation lines at word
boundaries, exactly the way your phone does it; Emacs inserts no
indication of wrapped lines at the fringes (though linum-mode still
gives it away).

Let’s pretend my copy of War and Peace is formatted with single-
line paragraphs. In Visual Line Mode it would look like Figure 20.

The biggest difference is that in Visual Line Mode, the vertical line
motion commands (like C-n (next-line) and C-p (previous-line))

https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Line-Truncation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visual-Line-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

166 keith waclena

Figure 20: Visual Line Mode

move by screen lines, rather than logical lines. So this is definitely the
natural way to work with single-line paragraphs.

You can use M-x visual-line-mode to switch in and out of this
mode in any Window, and if, unlike me, most of your files are struc-
tured as single-line paragraphs, you can make it your default every-
where with this Init File snippet:

(global-visual-line-mode +1) ; single-line paragraphs rule

The Horizontal Scroll Bar: the Last Resort?

With truncated lines, sometimes you actually do need to scroll hor-
izontally. In a graphical-mode Emacs, you may have a horizontal
scroll bar, which is certainly one way to do it. If you don’t have a hor-
izontal scroll bar and you want one, you can turn it on and off in the
current Window with M-x toggle-horizontal-scroll-bar, or make it
a global default with this Init File snippet:

(horizontal-scroll-bar-mode +1)

You can also scroll horizontally with C-x > (scroll-right) and
C-x < (scroll-left), which are the keyboard equivalents of yanking
on the horizontal scroll bar. By default each invocation scrolls by the
Window’s width (with a slight overlap), but of course they take a
numeric argument; multiple C-u’s are useful here. Naturally you can
also change the default scroll units.

The defaults are very infelicitous bindings so I recommend adding
this to your Init File and using these instead.

Init File
(global-set-key (kbd "C-<") 'scroll-left)

(global-set-key (kbd "C->") 'scroll-right)

The Header Line

A Window can optionally display a Header Line at the top which is
rather like an additional Mode Line. Header lines are generally cre-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visual-Line-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Horizontal-Scrolling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Horizontal-Scrolling

use gnu emacs the plain text computing environment 167

ated by certain Major Modes and the most common use is to display
headers for column-oriented data. Try M-x list-buffers to see one
in action; like most columnized Header Lines, you can usually sort
the columns by mouse-clicking in the Header. The Header is really
a display of the contents of the Buffer-Local Variable header-line-

format; it’s in no way part of the Window’s Buffer’s text.

The Fringes

The left and right Fringes are very narrow areas of the Window
mainly used to display graphical indicators that are matched to
Window lines, most commonly continuation lines and truncated
lines (see The Display of Lines), but also buffer boundaries that eliminate
the ambiguity of the presence of blank lines at the end of a buffer
(see Displaying Boundaries and “Useless Whitespace” in the Emacs
manual); to indicate added and deleted lines in diff-mode; and in
the special modes for running debuggers for various programming
languages (including, of course, Elisp).

If you’d like a see a Fringe in action, try making a new buffer
(C-x b newbuffer), make it the only Window in the Frame (C-x 1),
and type in one line of text. Note all the blank screen lines after
your single logical line. How do you know those screen lines aren’t
actual empty lines in the Buffer (consisting of many blanks and/or
newlines)? Now say M-x toggle-indicate-empty-lines; you should
see a change in the left Fringe. Now actually add a few empty lines
at the end of the Buffer by hitting RET a few times: note how the
Fringe makes clear which lines are really in the Buffer and which are
just an artifact of the display.

Follow Mode

If you have a very wide, high-resolution display, it may seem like
you’re wasting screen real estate when you’re editing a buffer whose
lines are significantly shorter than its Window’s width: much of the
right-hand side of the Window will just be blank space. The Unix
system dictionary file—/usr/share/dict/words on my machine—is a
particularly skinny example, since each of its 123,985 lines is a single
word; see Figure 21.

Follow Mode lets you exploit this empty space to show more lines
of your Buffer. Just say M-x follow-mode and now split your Window
with C-x 3 (split-window-right). Normally, after C-x 3, the new
Window initially shows exactly the same text as the old Window: the
top screen line of the old Window is the top screen line of the new
Window. But when Follow Mode is active, the top line of the new

https://www.gnu.org/software/emacs/manual/html_node/emacs/List-Buffers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Displaying-Boundaries
https://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Diff-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Follow-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window

168 keith waclena

Figure 21: The Tragedy of Wasted
Screen Real Estate

Window is the line after the bottom line of the old Window: it’s as if the
two Windows comprise a single virtual Window that’s twice as tall as
the original. Another C-x 3 gives you a virtual Window that’s three
times as tall. You can have as many splits as make sense, given the
lengths of your logical lines. Figure 22 shows the same file after six
C-x 3’s; I’ve turned on linum-mode to show how the screen lines are
related to the Buffer’s logical lines.

Figure 22: Follow Mode

Follow Mode isn’t just a trick to initialize the positions of the lines
in the Windows! If you move Point off the bottom of one Window
with some invocations of C-n (next-line), the cursor will appear at
the top of the next Window. If you search for a word that’s visible in
one of the other Windows, Point (and the cursor) will just jump there
without scrolling any of the Windows. And if you do scroll, all the

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 169

other Windows scroll in lock-step to maintain the tall virtual Window
effect. You can delete Windows and re-split them at will, and you
can have C-x 2 (split-window-below) splits with different Buffers
in the same Frame; Follow Mode will keep all the Windows that are
displaying the same buffer in sync.

There’s a related Minor Mode, next-error-follow-minor-mode,
which is typically bound to a keystroke in modes like grep-mode,
occur-mode, compilation-mode, and the like, which makes motion
in the hits Buffer cause automatic scrolling in the associated target
Buffer.

Scrolling Many Different Buffers at Once

This style of lock-step scrolling can be useful with different Buffers
displayed in separate Windows, too. Suppose you have two Buffers
with related data: the information on line N of the first Buffer is
related to that on line N of the second Buffer, and so on. You can
display these two Buffers side by side, with their lines lined-up, but if
you scroll one of them, now you’re out of sync. M-x scroll-all-mode

will synchronize all the Windows in the Frame as you scroll one of
them.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Window-Convenience

The Mode Line in Detail

Figure 23: The Mode Line

Every Window has a Mode Line at its lower edge129. If your Frame 129 The Mode Line is actually optional
(EIPNIF) —you can turn it off by setting
mode-line-format to nil: but it’s so
useful and has so little cost in screen
real estate that I don’t see why you
would.

only has one Window, its Mode Line is above the Frame’s Echo Area.
The Mode Line displays dynamic information about the Window’s
Buffer—the Buffer name, its Major Mode, and more: some of this info
is shown in a terse and even cryptic form.

The Mode Line is completely customizable, but out of the box it
has the following main components:130 130 The first line here is an example of a

Mode Line; in the second I’m labeling
the various components for the sake of
discussion.

U:@**- *scratch* All L1 Hg:94daf (ELisp ElDoc)

CEFBB- BUF POS LINE VC (MAJOR MINOR ...)

C a terse indication of the Buffer’s Coding System or character set

E the Buffer’s end-of-line convention

F an @ if this is a client frame

B the Buffer’s state relative to the file on disk (if it’s visiting a file)

BUF the Buffer’s name (which is typically also the name of the file
it’s visiting, if any)

POS the position of the visible Window text vis à vis the Buffer text

LINE the number of the line Point is in

VC the Version Control state (if the Buffer is visiting a file under
Version Control)

MAJOR the Buffer’s Major Mode

MINOR (some of) the Buffer’s Minor Modes

https://www.gnu.org/software/emacs/manual/html_node/emacs/Mode-Line
https://en.wikipedia.org/wiki/Character_encoding

172 keith waclena

C — Coding Systems

There are about 50 single-character values indicating the most com-
mon Coding Systems that can appear in the C column. Here are
a few of them; how likely you are to see any of these depends on
where you live, what language you speak, and the kind of files you
edit. The real way to learn a Buffer’s encoding is to execute M-x

describe-current-coding-system in the Buffer.

U various Unicode UTF encodings
1 ISO Latin-1
- US ASCII
= raw, unencoded (binary) data

* Windows 1250

D various DOS code pages
c Chinese GB2312

B Chinese BIG5

J Japanese
K Korean

E — End-of-Line Encodings

This can be a single character if the Buffer’s end-of-line encoding is
the normal one for your operating system, or else a word in paren-
theses.

: (Unix) Unix newlines (line-feeds)
\ (DOS) MS-DOS (Windows) CRLFs
/ (Mac) Old Macintosh carriage returns

F — Client Frame Indicator

If there is an @ in this position it indicates that this Frame was cre-
ated by the Emacsclient (and so this Emacs is necessarily an Emacs
Server); see Client / Server.

B — Buffer State

This indicates the Window’s Buffer’s state versus the file it’s visiting,
if any.

-- Buffer unmodified

** Buffer modified
%% Buffer read-only and unmodified
%* Buffer read-only and modified

use gnu emacs the plain text computing environment 173

BUF — Buffer Name

This is simply the Buffer name, which for file-visiting Buffers is usu-
ally the basename of the file, possibly modified for disambiguation.

POS — Visible Text Position

This is a hint of how much of the Buffer is visible in the Window.

Top Beginning of Buffer is visible
Bot End of Buffer is visible
All All of Buffer is visible
NN% NN percent of Buffer precedes visible portion

LINE — Point’s Line Number

Self-explanatory.

VC — Version Control State

If the Buffer’s file is under Version Control (VC), the Mode Line
will indicate the file’s VC state in the form: BE-ID (for example,
Hg:94daf):

BE the (abbreviated) name of the VC back-end

- the status of the file, indicated by a single character

ID the version number (or version identifier) of the file

For the possible values of BE, see the list of version control sys-
tems (VCS’s) in Version Control. ID is whatever your system uses to
identify a version number; for RCS it might look like 1.22 whereas
for a distributed VCS like Mercurial or Git it will probably be a hex-
adecimal number like 94daf.

The : can actually be any of the following status indicators:

- file is unmodified (or unlocked)
: file is modified (or locked)
! file contains merge conflicts or was removed from VC
? file is in VC but missing from the working directory
@ file was added locally but is not committed

Note that in an old-fashioned lock-based VCS (like RCS), a username
may also be present—e.g., RCS:jim:1.3—indicating that user jim has
the file locked.

174 keith waclena

MAJOR — Major Mode Name

The name of the Buffer’s Major Mode, with the -mode elided, so e.g.
Fundamental for fundamental-mode, Org for org-mode.

MINOR — Minor Modes

This is a space-separated list of strings, called “indicators” or “lighters”,
identifying enabled Minor Modes. Unlike the Major Mode indicator,
these are optional: a given Minor Mode may choose to use a very
abbreviated indicator, or none at all. So many Minor Modes are typ-
ically in use that many of the ones that are enabled by default—e.g.
auto-encryption-mode, auto-compression-mode—use no indicator
just to save space in the Mode Line.

The Mode Line and the Mouse

The Mode Line, being one of the few things in Emacs that’s inacces-
sible to the keyboard, has a small number of mouse bindings. They
come in two flavors:

1. mouse clicks on Mode Line text (or images) (e.g. the Buffer name,
a Mode indicator, the Coding System character (class C above)),
and

2. mouse clicks in any of the blank space between the textual ele-
ments; these clicks allow you to select, resize, or delete windows.

Taking the latter category first, we have the following:

Mouse Button Mouse Action Effect
mouse-1 click select the Mode Line’s Window

drag resize Windows vertically
mouse-2 click like C-x 1 in the Mode Line’s Window
C-mouse-2 click like C-x 3 in the Mode Line’s Window
mouse-3 click like C-x 0 in the Mode Line’s Window

As for mouse clicks in the textual or graphical elements, they vary
to suit: just hover the mouse over the element and, in the Echo Area,
you’ll see a brief description of the element and what various clicks
will do.

Optional Mode Line Features

There are several optional Mode Line features that you can turn on,
and you can customize the appearance with a variety of formats

https://www.gnu.org/software/emacs/manual/html_node/emacs/Compressed-Files

use gnu emacs the plain text computing environment 175

and Faces. The best way to do this is via M-x customize-group RET

mode-line.

size-indication-mode displays the total size of the Buffer after
POS, in a form like 74% of 712k.

column-number-mode displays Point’s column number next to the
line number

display-time-mode displays the current time, load average, and an
indicator when you have new mail.131 131 Only if you receive your mail locally;

see Mail, News, and Feeds.
display-battery-mode displays the percentage remaining of your

laptop’s battery charge.

There are also at least 56 third-party packages to enhance your
Mode Line, including popular theming to make your Emacs look a
little less Emacs-like.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Optional-Mode-Line
https://www.gnu.org/software/emacs/manual/html_node/emacs/Optional-Mode-Line
https://en.wikipedia.org/wiki/Load_(computing)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Optional-Mode-Line

Frames

Figure 24: Emacs Data Structures

Legend:

+ One or more
1 Exactly one
1? One or none

When you fire up Emacs, a new “window” pops up: not an Emacs
Window, but an operating system or desktop window. Earlier I men-
tioned that, since Emacs had multiple windows two years before
Graphical User Interfaces were commercially available, it needed a
new term for this object: a Frame.

A Frame consists of at least one Window, and has a Menu Bar,
Tool Bar, Scroll Bars (vertical and horizontal)132, and an Echo Area, as 132 The Menu Bar, Tool Bar, and Vertical

Scroll Bar are turned on by default, but
you can turn them off.

in Figure 25.

Figure 25: A Frame with Two Windows

You can create as many additional Frames as you like, and use
them as another way to organize your work, as you can with the Tab
Bar for example.

You can of course delete any Frames you create; deleting a Frame
does necessarily delete all the Windows in it, but as usual in no way
kills the Buffers in those Windows. Deleting the last and only Frame

178 keith waclena

is the same thing as exiting Emacs with C-x C-c (save-buffers-
kill-terminal);133 as always, Emacs will ask for confirmation if you 133 Unless you’re running the Server.

have any unsaved Files.

Frame Commands

The main commands for working with Frames are all on the C-x

5 prefix (see Table 11); they’re completely analogous to the C-x 4

family of Other Window commands: where a C-x 4 command is a
shortcut to something in another Window, the corresponding C-x

5 command does the same thing in a new Frame. The fundamen-

Key Type Action
C-x 5 2 Create create a 2nd frame
C-x 5 C-f Find a file in a new frame
C-x 5 f . . . the same
C-x 5 r . . . the same, but Read-only
C-x 5 b switch to a Buffer in a new frame
C-x 5 C-o Open a buffer in another frame
C-x 5 m compose an eMail in another frame
C-x 5 d open a Dired in another frame
C-x 5 . find the definition of the identifier at Point
C-x 5 0 Delete zero-out (delete) the current frame
C-x 5 1 make the current frame the 1 and only frame
C-x 5 o Switch switch to the Other frame

Table 11: Frame Manipulation Com-
mands

tal Frame-creation command is C-x 5 2 (make-frame-command)
(mnemonic: makes a 2nd Frame); you can also make a new Frame
initialized with some file, Buffer, or the like.

C-x 5 0 (delete-frame) deletes the current Frame; as mentioned
above, if the current Frame is the only Frame, this is equivalent to
exiting Emacs134. C-x 5 1 (delete-other-frames) deletes all your 134 The rules are slightly different if

you’re running the Emacs Server.Frames except for the current one. These two commands are analo-
gous to C-x 0 (delete-window) and C-x 1 (delete-other-windows).

Finally, C-x 5 o (other-frame) is like C-x o (other-window), but
it always switches to another Window in a Frame other than the
current one (so it has no effect if you only have one Frame). If you
repeat this command, it cycles through all the Frames you have open.
Note that Emacs has to delegate this action to your window manager
(WM) or operating system (the WM is in charge!), so you may have
to tweak your WM or Emacs itself to make this work the way you
want; see “Frame Commands” in the Emacs manual for details.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Creating-Frames
https://www.gnu.org/software/emacs/manual/html_node/emacs/Frame-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Frame-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Frame-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Frame-Commands

use gnu emacs the plain text computing environment 179

Frames and Monitors

Some lucky people have more than one monitor connected to their
desktop computer (especially in an office situation). You can pop up
a Frame on a particular monitor with M-x make-frame-on-monitor;
you’ll be able to use Completion on whatever monitor names your
operating system has assigned.135 135 For Unix users running X Windows,

you can also open new Frames on other
X displays or servers; see “Multiple
Displays” in the Emacs manual.Controlling Graphical Window Elements

Some people find the various GUI elements of Frames to be an an-
noyance. While I recommend that you exploit the Menu Bar and Tool
Bar while you’re getting comfortable with Emacs, here’s how to dis-
able any of these elements if and when you want to (I disable all of
these).

Best is to use Customize via M-x customize-group RET frames. If
you’re inclined to disable any of these elements, you may also want
to disable GUI dialog boxes and tool tips (and use Emacs Completion
instead)136; use M-x customize-group RET menu. You can also just add 136 I find these to be excruciatingly slow

if you run the Emacs Client over a net-
work connection to a remote machine
(and anyway, Emacs Completion is far
superior to any GUI dialog box).

one or more of these snippets to your Init File:

(menu-bar-mode -1) ;turn off menu bar

(tool-bar-mode -1) ;turn off tool bar

(scroll-bar-mode -1) ;turn off vertical scroll bar

(horizontal-scroll-bar-mode -1) ;turn off horizontal scroll bar

(tooltip-mode -1) ; turn off GUI tooltips

(setq use-file-dialog nil use-dialog-box nil) ; turn off GUI dialogs

Customizing Frame Appearance

You can extensively customize the appearance of your Frames: things
like size, position on your monitor, fonts, colors, cursors, and much,
much more. Many of these can’t be done via Customize; see “Frame
Parameters” in the Emacs manual.

If you use desktop-save-mode, it will remember any changes to
your Frame parameters, including implicit changes: if you embiggen
the font or screen position of a Frame, the next time you start up
Emacs, that Frame will be restored at its last screen position and font
size (assuming your window manager is okay with this).

Saving Frame Configurations

We discussed how you can save your Window configuration in a
Register with C-x r w (window-configuration-to-register) so that

https://en.wikipedia.org/wiki/Computer_monitor
https://www.gnu.org/software/emacs/manual/html_node/emacs/Multiple-Displays
https://www.gnu.org/software/emacs/manual/html_node/emacs/Multiple-Displays
https://www.gnu.org/software/emacs/manual/html_node/emacs/Multiple-Displays
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Frame-Parameters
https://www.gnu.org/software/emacs/manual/html_node/emacs/Frame-Parameters
https://www.gnu.org/software/emacs/manual/html_node/emacs/Configuration-Registers

180 keith waclena

you can restore it with a keystroke. That Window configuration is
merely the set of Windows in your current Frame. But you can also
save your entire configuration of all Frames with all their Windows in
one step with C-x r f (frameset-to-register).

Frames in Non-Graphical Mode

Even a non-graphical Emacs supports multiple Frames, but in a very
limited manner: each Frame always uses the full screen of the termi-
nal it’s running in, so you can only see one at a time, and elaborate
Frame parameters aren’t supported (just because terminals can only
do so much compared to what Emacs can do in graphical mode).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Configuration-Registers

Files

Most of what we think of as “editing files” really consists of editing
Buffers, but there are a number of topics that apply specifically to files
and how they relate to Buffers. For files as the contents of directories,
and performing file maintenance operations like copying, renaming,
and the like, see Directories.

Visiting Files

As already mentioned, the usual way to visit a file (i.e., load it into
Emacs for editing) is C-x C-f (find-file), but there are a few other
useful variants. First, we have variants for finding files in specific
ways:

C-x C-r (find-file-read-only) This is just like C-x C-f followed
by C-x C-q (read-only-mode); you can use this when you want to
make sure you don’t forget and start editing a file you only want
to look at.

M-x find-file-existing This is just like C-x C-f but it won’t let
you create a new file. I’ve never used it; it’s probably most useful
if you’re trying to pull up a file whose name contains wild cards
(glob characters), like * or ?, because it won’t expand them. It’s a
little-known (and by me, little used) feature of find-file that if
you use wild cards in the file name, it will load all the matching
files into multiple Buffers.

Let’s talk about neatness. Some people accumulate dozens of file
Buffers in their Emacs (even hundreds, for users of server-mode), but
others like to keep a lean and mean Emacs by killing Buffers ASAP
when they’re done with them. C-x C-v (find-alternate-file) is
designed for the ASAPers. It replaces the file you’re editing with a
different file, whereas C-x C-f adds an additional file to your Emacs.
It’s just like doing C-x k (kill-buffer) immediately followed by
C-x C-f, except it also reuses the Window of the killed Buffer, so
your Window layout doesn’t change at all. This is also often used

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Buffer
https://en.wikipedia.org/wiki/Glob_(programming)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer

182 keith waclena

when you visit a file and immediately realize that it wasn’t the file
you meant: C-x C-v let’s you correct the mistake. Note that this is a
brand-new Buffer, so if you’ve made any Buffer-local changes to the
previous file’s Buffer, like say turning on a Minor Mode, they are lost.

Then we have a family of convenience commands that simply
open a file in a different Window. C-x C-f, C-x C-r, and find-file-

existing all open the file in the current Window; these commands
save you the effort of splitting Windows and rearranging Buffers:137 137 You’ll recall that C-x 4 is the keymap

for commands that do things in other
Windows, and C-x 5 is for other
Frames.• C-x 4 f (find-file-other-window)

• C-x 4 r (find-file-read-only-other-window)

• C-x 5 f (find-file-other-frame)

• C-x 5 r (find-file-read-only-other-frame)

Finally, M-x find-file-literally visits a file but shows you the
literal contents of the file. This means that the Major Mode will be
fundamental-mode, regardless of what it would normally be (so no
syntax highlighting); line ending- and character set-conversion will
not be done, and multi-byte characters (as in Unicode) will be shown
as individual bytes. Normally helpful features like automatic han-
dling of compressed, encrypted, and archive files (see below) will not
be done.

When visiting a non-existent file (to create it), you might want
to specify a path that contains one or more non-existent directories.
Suppose the directory ~/txt exists, but contains only plain files—
no subdirectories—and you say C-x C-f ~/txt/emacs/how-to.org.
Emacs will happily open up a new Buffer for you, but you’ll see this
message in the Echo Area:

Use M-x make-directory RET RET to create the directory and its parents

You should take the advice. You don’t have to do it immediately, but
as soon as you start typing in this Buffer, you’ll start getting warning
messages as Emacs repeatedly tries, but fails, to create the Buffer’s
checkpoint file in the non-existent directory:138 138 I suppose you could instead disable

auto-save-mode, but I mean, just make
the directory already.Error (auto-save): Auto-saving how-to.org: Opening output file:

No such file or directory, ~/txt/emacs/#how-to.org#

You can also use M-x make-directory anytime you need a new direc-
tory, just as with mkdir in the shell; note that make-directory always
acts like mkdir -p and makes all necessary intermediate directories
for you.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Creating-Frames
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Save-Control

use gnu emacs the plain text computing environment 183

Find File at Point

M-x find-file-at-point is extremely useful for when you’re looking
at the name of a file in some Buffer, and want to open that file139. 139 The easier-to-type ffap is defined as

an alias for find-file-at-point.Just move Point to immediately before, within, or immediately after
the file name, and issue the command (it’ll give you a chance to
tweak the name in the Minibuffer). In addition to filenames, it also
handles URLs at Point via the Browse URL subsystem.

The command M-x ffap-menu will offer up for completion all the
files and URLs mentioned in the current Buffer.140 140 Apparently I have 1,010 of them in

this book at the moment (almost all
URLs).

If you really like ffap, you can invoke ffap-bindings in your Init
File and it will remap 18 file-visiting commands (e.g. C-x C-r or
C-x 4 C-f) to use ffap.

Persisting Files Across Sessions

You can arrange for the complete set of files you’re currently editing
to be restored when you exit and then restart Emacs. See The Desktop.

Large Files

When you visit a file, the entire contents of the file is loaded into
memory. Modern computers have so much memory available that
this is rarely an issue, but disk is still bigger than RAM, and you
don’t want your Emacs to slow down, much less be terminated by
the operating system, because it uses too much memory.

When you visit a large file, Emacs will ask you to confirm that you
really want to open it:

File Delicate Friction.zip is large (106.1 MiB), really open? (y)es or (n)o or (l)iterally

If you choose “(l)iterally”, the file will be opened with find-file-

literally. One of the problems with huge files is that syntax-
highlighting may be slow; visiting the file literally will use funda-
mental mode and there won’t be any syntax-highlighting to slow you
down.

So what defines a “large” file? The variable large-file-warning-

threshold. It’s default value is a conservative 10,000,000 bytes; I
recommend setting it to at least 100MB.

Init File
(setq large-file-warning-threshold (* 100 1024 1024)) ; 100MB

If you need to edit truly large files that won’t fit in memory (say
multiple gigabytes in size), you can do it with the VLF package. See
The Package Manager for more information.

A related issue is files with extremely long lines, which can cause
certain Major Modes to struggle. Files with such lines are typically

https://www.gnu.org/software/emacs/manual/html_node/emacs/FFAP
https://www.gnu.org/software/emacs/manual/html_node/emacs/FFAP
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting

184 keith waclena

computer-generated and aren’t usually intended to be edited by
humans: things like minified Javascript or byte-code.141 The solution 141 A typical minified Javascript file on

my system is only 3M in size — not any
kind of problem for my Emacs — but
contains lines as long as 657,440 bytes.

to this problem is global-so-long-mode; it automatically switches
buffers visiting files with long lines to so-long-mode, which handles
them with no problem. I recommend it for your Init File:

Init File
(when (version<= "27.1" emacs-version) ; only available recently...

(global-so-long-mode +1)) ; speed up long lines

Saving Files

We’ve already mentioned the basic commands for saving files (re-
ally, saving Buffers): C-x C-s (save-buffer) and C-x s (save-some-
buffers). You can additionally save an edited Buffer under a differ-
ent file name with C-x C-w (write-file) (this effect is sticky: if you
continue editing and then save with C-x C-s or C-x s, it will use the
new name you chose). If you want to make a modified version of an
existing file, rather than copying it first to a new name, you can just
do C-x C-f and then immediately do C-x C-w to save it under the
new name. To be clear, C-x C-w does not rename the file, but rather
makes a new file with a new name.

You can also tell Emacs to ignore any modifications you’ve made
to a Buffer, so that you don’t accidentally save them to the file with
a C-x s or an impulsive C-x C-s. Just use M-~ (not-modified); after
doing it, you’ll notice that the modification asterisks ** in the Mode
Line have changed back to --, indicating the unmodified state, and
Emacs won’t ask you about saving this Buffer (until you modify it
again).

Read-Only Buffers, or, Emacs is More

Emacs makes an excellent pager—i.e., a replacement for programs
like more(1) and less(1). Just do C-x C-r (find-file-read-only)
(so that you don’t accidentally modify the file) and now you can view
the file and scroll and search through it.

Even better is to turn on the Minor Mode view-mode, which makes
the Buffer read-only (if it isn’t already) and let’s you page through
it with SPC and backwards with DEL; it also redefines many printing
characters to scroll by half-screenfuls, by lines, set marks and jump
back to them, and many other things handy for browsing.

You can arrange to have view-mode turned on automatically when-
ever you make your Buffer read-only (which also happens if you visit
a file that you don’t have permission to edit). I recommend turning
this on in your init file:

Init File

https://en.wikipedia.org/wiki/Minify
https://www.gnu.org/software/emacs/manual/html_node/emacs/Long-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting

use gnu emacs the plain text computing environment 185

(setq view-read-only t)

Reverting Buffers

We’ve all experienced the regret of making extensive changes to a
Buffer, and then wishing we hadn’t! If you change your mind about
all the edits you’ve done since your last save, you might think you
need to enter upon a long, tedious sequence of Undos until you get
back to the unmodified version, or use C-x k (kill-buffer) and
then revisit the file142. But really, all you need to do is ask Emacs 142 I’ve even known people in this

situation to exit Emacs, answer “no”
to the “Save file?” question, and then
restart!

to revert the buffer with M-x revert-buffer or the new command
C-x x g (revert-buffer-quick): this means that Emacs will refresh
the Buffer contents from the file on disk (revert-buffer will ask
for confirmation), and you can then start over with your editing.
Remember that if you made changes and saved them, then reverting
can’t undo the changes you saved; you need Version Control for that.
Note that, when you revert, this is the same exact Buffer, so if you’ve
made any Buffer-local changes, they are preserved.

You naturally can’t revert Buffers that aren’t visiting files. Or can
you? Actually, many dynamic Application Buffers can be reverted!
Examples include Buffers viewing web pages in the Web Browser (re-
verting reloads the page), Dired Buffers (reverting updates the Buffer
to match the directory on disk), the Buffer Menu, and many more.
You’ll commonly find revert-buffer bound to g in Application
Buffers.

Auto-Reverting (Watching Files)

Sometimes you want to visit a file that’s regularly changing on disk.
In view-mode, you can use F (View-revert-buffer-scroll-page-
forward) to manually revert the Buffer from disk to see any updates,
but you can also put a Buffer into auto-revert-mode, and it will
watch the file and automatically revert the Buffer whenever there’s a
change.

This is very handy when you’re editing a LATEX or Org Mode doc-
ument and periodically generating a new PDF which you’re viewing
in doc-view-mode as you work (see PDFs and Image Files).

Log files are notable in that they are only appended to. You can
use auto-revert-mode here, but a better choice is auto-revert-tail-

mode, since it doesn’t reload the entire (possibly huge) file every time:
it just loads new lines from the end. (This is like the shell’s tail -f

command.)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Revert
https://www.gnu.org/software/emacs/manual/html_node/emacs/Document-View
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Revert
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Revert

186 keith waclena

Backup Files

Emacs never modifies your file on disk until you tell it to, but it’s
very careful about saving your work for you in a number of ways.

Backup files Emacs preserves the previous version of your file when
you save. If your file is named foo, the backup will be called foo~

(note the tilde).

Backup files are, by default, stored in the same directory as the file
being backed up, but you can arrange for the backups to go in a
subdirectory, or in a completely different location, by Customizing
backup-directory-alist.

Note that, by default, if your file is under version control, Emacs
won’t bother to make any kind of backup files, unless you tell it to
(see vc-make-backup-files).143 143 Though it may sneak in a single

backup file if you modify the new file
before you add the file to the repo; you
can delete this backup file once the file
is checked-in and version control is
managing it.

Numbered Backups You can also have Emacs make numbered backups,
so that you can keep more than just the previous version. The old-
est numbered backup file of the file foo would be named foo~1~;
foo~2~ would be newer, and the most recent is the one with the
highest number (there’s no limit to the number kept!). Numbered
backups are off by default; you can set them as your default, but
you can also manually rename any one backup file to it’s numeric
form:

M-x rename-file RET foo~ RET foo~1~ RET

and from that point on, Emacs will make numbered backups of
that file (that is, until you delete all the backups; then it would
start over with simple backups).

I don’t recommend numbered backups; in general using your pre-
ferred version control system is much better practice, and Emacs
has excellent VCS support.

Auto-Save Files

Emacs also, by default, auto-saves your file while you’re editing it144; 144 Even in a version-controlled direc-
tory.I think of these as checkpoint files. The auto-save file for a file foo is

called #foo#. If Emacs (or the system) were to crash before you could
save your edits, you could recover almost all of them from this file.
Auto-saving happens (by default) every 300 characters you type, or
every 30 seconds that you’ve been idle, or when a system error is
encountered, whichever comes first. You can of course tweak these
parameters if you’re either more paranoid or over-confident.

use gnu emacs the plain text computing environment 187

You can recover lost data by manually fiddling with the file and its
contents from the auto-save file, but the simplest approach is just to
visit the file you were editing and then say:

M-x recover-file

and, after a cautious confirmation dialog, Emacs will replace the
contents of the Buffer with the auto-save file contents. In fact, if you
visit a file which has an auto-save file which is newer than the file
itself, Emacs will offer to do this recovery automatically.

If your entire session crashes (dropped connection to a remote
host, laptop battery runs down) and you’ve been lazy about saving
your work, you can fire up Emacs again and say:

M-x recover-session

and Emacs will walk you through the recover-file process for each
file that needs it.

If you like to live dangerously, you can turn auto-saving off, but I
really discourage this; there’s no noticeable overhead and the auto-
save file is deleted every time you do an explicit save with C-x C-s,
so they don’t clutter up your directories. I would also discourage the
micro-management of exactly how auto-saving works which Emacs
allows (EIPNIF). But see “Auto Save” in the Emacs manual for the
gory details.

Lock Files

You can’t (normally) edit two copies of the same file in the same
Emacs, because of the way C-x C-f works, simply switching Buffers
if you try to visit a file that’s already loaded.145 But what if you fire 145 If you visit a symlink to a file you’re

already editing, Emacs will figure this
out.

up two Emacsen and edit the same file in both? A recipe for disaster?
Well, there’s no need to worry as the two Emacsen will detect the
conflict and notify you (but only if you try to modify the file when
the other Emacs already has it modified). Emacs will ask:

FILENAME locked by keith@krampus... (pid 290502): (s, q,p,?)?

If you type s you can “steal” the file from the other Emacs—this is
safe; it just flips the roles of the two participants, and now if the other
Emacs user tries to modify their Buffer, they will be the intruder and
be asked the same question.

You can also type q to abandon the attempt, or type p to proceed
into danger with no protection, if you insist.

Who are these “other users”? Nowadays, most computers, like
your laptop, are effectively single-user systems (though all real op-
erating systems support logins for multiple users), but when Emacs

https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Save

188 keith waclena

was born, few people had their own computer and instead worked
together on the same mainframe or minicomputer: so file editing
conflicts could occur.

But they can still occur on your single-user laptop: the other user
is you, in a different terminal, or desktop, or the like. So lock files are
still important.

Lock files are implemented (on Unix systems) as symbolic links
and look something like this example (I mention this only in case you
stumble upon one, and wonder what it is): .#emacs-tutorial.org ->

keith@krampus.1173283:1613350748

Files Modified Behind Emacs’s Back

Sometimes a file in your Emacs will be modified by some other pro-
cess, behind Emacs’s back. For example, you might synchronize files
across multiple computers with an application like Syncthing, and
thus you might change a file on your phone or desktop when you
also have the file loaded in the Emacs on your laptop.146 If you start 146 I hope you didn’t use Vim in a

terminal to make a quick change to that
file. . .

to modify the Buffer (say, by typing in it), when the file has changed
on disk, Emacs will ask:

FILENAME changed on disk; really edit the buffer? (y, n, r or C-h)

If you’re not surprised at this (in the file synchronization case above,
you probably won’t be), you can type r to revert the Buffer.

If you are surprised, you can type n and your attempt to edit will
be aborted; now you can investigate the situation. If you’re lucky,
you’ll discover that you do indeed want the changes that were made
on disk, and you can say M-x revert-buffer to refresh the contents
of the Buffer and get back to work. (If you type C-h at the prompt, all
these options will be summarized.)

If your Buffer was already modified in Emacs when the disk file got
changed147, then the question will be: 147 Remember, save early and often!

FILENAME has changed since visited or saved. Save anyway? (yes or no)

This is a much more annoying situation. If you proceed with your
save, you will lose the changes on disk, but if you revert, you will
lose the changes in your Buffer! If you don’t care about one of the
two, you’re okay: you can revert, throwing away your Buffer changes,
or else save and allow the text currently in the Buffer to trump the
contents on disk. But as Emacs says, “you risk ruining the work of
whoever rewrote the file”.148 148 Remember, that other user is you!

If you want the best of both worlds, you’ll need to combine the
two versions. The solution in that case is M-x ediff-current-file,
which uses the very powerful Ediff subsystem to let you merge

https://syncthing.net/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points

use gnu emacs the plain text computing environment 189

changes in the disk file into your Buffer, and vice versa; see Diffing
and Merging.

The cryptic Table 12 summarizes your options when your Buffer
and your file are at odds. As in the Mode Line, -- indicates unmodi-
fied and ** indicates modified; :-) means we want the modifications,
and :-(means we don’t.

Buffer \ Disk -- ** :-(** :-)

-- (no conflict) C-x C-w¹ M-x revert-buffer

** :-) C-x C-s C-x C-s² M-x ediff-current-file

** :-(M-x revert-buffer C-x k³ M-x revert-buffer

Table 12: Resolving Modified Buffer vs
File Conflicts

Notes:

1. We don’t want the disk file content; since the Buffer’s not modi-
fied, C-x C-s has nothing to save, but C-x C-w will write the Buffer
out: just use the same filename.

2. We want the Buffer modifications, but don’t want the disk file
modifications. Since the Buffer is modified, C-x C-s will write it
out, but you’ll have to confirm that you really mean to clobber the
modified disk file.

3. We want neither the Buffer modifications nor the disk file modifica-
tions. In this case, you should kill your unwanted modified Buffer,
and use Version Control to recover the version of the file that you
want.

Compressed Files

Emacs handles compressed files transparently. If you visit a file that’s
been compressed by any of the common Unix compression tools
(compress, bzip2, gzip, lzip, lzma, xz, and zstd), it will be auto-
matically uncompressed into the Buffer, and when you save it, the
changed Buffer will be recompressed.149 149 If Emacs isn’t familiar with your

favorite compression tool, you can
customize the variable jka-compr-

compression-info-list.

The Major Mode for a compressed file will be chosen in the usual
way; the file extension used to choose the mode will be the one “un-
derneath” the compression extension (e.g., a file foo.org.bz2 will use
bzip2(1) for the compression, but the Buffer will be in org-mode).

This is all actually handled by the Minor Mode auto-compression-

mode, which is on globally (i.e. in all Buffers) by default. If you don’t
like this behavior, you can toggle the mode off as usual.

Encrypted Files

Emacs handles encrypted files in the same transparent manner that
it handles compressed files. Unlike compression, there are not that

https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compressed-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compressed-Files

190 keith waclena

many general-purpose encryption tools; Emacs only directly supports
GNU Privacy Guard (GnuPG)150 — see its manual. The default file 150 You’ll need to install GnuPG from

your operating system’s package
manager.

extension is .gpg; if you visit an encrypted file with that extension,
it will be decrypted into the Buffer, and when you save, it will be
encrypted back to the file on disk.

The Major Mode for an encrypted file Buffer will be chosen in
the usual way based on the underlying file extension, if any, so
foo.org.gpg will come up in org-mode.

This is all actually handled by the Minor Mode auto-encryption-

mode, which is on globally (i.e. in all Buffers) by default. If you don’t
like this behavior, you can toggle the mode off as usual.

There are some differences compared to compressed files, of
course. Emacs turns off auto-save-mode for the Buffer of an en-
crypted file, to avoid exposing your unencrypted text in a check-
point file. Additionally, encrypting and decrypting a file requires
you to specify a passphrase or key of some kind, for which you’ll be
prompted.

GnuPG is a complex program and you’ll have to do some studying
to really understand it. The most important concept is the distinction
between symmetric and public key encryption. Public key has major
advantages but requires some setup and preparation; you can easily
do symmetric encryption without any. See EasyPG Assistant for more
information on Emacs GnuPG integration.

Archive Files

You can also directly edit archive files, like tar files; 7z, ar, arc, lzh,
lzh-exe, rar, rar-exe, squashfs, squashfs, zip, and zoo archives; and all
types of OpenDocument files (word processing, spreadsheet, presen-
tation, graphics, and formula files, which are stored as ZIP archives
containing multiple parts). The interface has many similarities to
Dired.

When you visit an archive, you are shown what looks like the table
of contents listing of that archive format. Here’s the Buffer contents I
see when I visit the tar archive for one of my Emacs packages via C-x

C-f refer-mode-1.18.0.tar:

drwxr-xr-x keith/keith 0 refer-mode-1.18.0/

-rw-r--r-- keith/keith 72 refer-mode-1.18.0/refer-mode-pkg.el

-rw-r--r-- keith/keith 612 refer-mode-1.18.0/dir

-rw-r--r-- keith/keith 50555 refer-mode-1.18.0/refer-mode.el

-rw-r--r-- keith/keith 30243 refer-mode-1.18.0/refer-mode.info

-rw-r--r-- keith/keith 437 refer-mode-1.18.0/README

Note that the Mode Line will show the size of visible Buffer text,
which is what it always does (see, for example, Narrowing), but this

https://www.gnupg.org/
https://www.gnupg.org/documentation/manuals/gnupg/
https://en.wikipedia.org/wiki/Archive_file
https://en.wikipedia.org/wiki/Tar_(computing)
https://en.wikipedia.org/wiki/ZIP_(file_format)

use gnu emacs the plain text computing environment 191

is deceiving. For the above tar file, the Mode Line says the Buffer
contains 384 bytes, but Emacs really has loaded the entire tar file into
memory, and its size is actually 92K. I mention this just because it’s
not unusual for archive files to be very large. If you try to visit a
really big archive, you’ll get the large file warning, to make sure you
really want to do it.

Via the Buffer of an archive file, you can edit any of the component
files transparently. Just position Point on the desired file’s line and
hit e, f, or RET151 You’ll now be in a Buffer containing the contents 151 In this tar-mode buffer, that’s tar-

extract; it’ll be an analogous function
for another type of archive.

of that file; the Buffer name in the Mode Line will be something like
refer-mode.info (refer-mode-1.18.0.tar).

You can edit at will using all the features of Emacs; when you save
the Buffer, the edited contents will replace that file in the archive—
but only in the archive Buffer: the archive file on disk won’t be modified
until you save the archive Buffer itself. So fully saving a file from
an archive is a two step process: save the file, then save the archive
containing it. When you save the Buffer of the component file, you’ll
see a message like this one in the Echo Area:

Saved into tar-buffer ‘refer-mode-1.18.0.tar’. Be sure to save that buffer!

In addition to editing the archive contents, you can manipulate the
archive itself. You can delete, rename, or change the owner, group,
or mode of any of the component files. You can copy a file out of the
archive to the disk, and you can add a new file to the archive (you’ll
get a new empty Buffer to which you can add content). In the archive
Buffer, just do the usual C-h m (describe-mode) or hit ? for help; see
“File Archives” in the Emacs manual.

Many archive formats implement their own compression scheme,
but tar archives don’t; they are usually compressed by any of the
standard Unix compression programs (like gzip(1) or bzip(1)); tar-
mode works on compressed tar archives, too.

Most of the other archive formats support the same kinds of op-
erations, with the same key bindings, but there are a few lacunae (in
particular, not all the other archive formats support changing owner,
group, or mode—probably because these are Unix concepts and the
other archive formats were developed on MS Windows).

Emacs’s support for tar files is fully implemented in Elisp, so you
don’t need to have a tar(1) program installed, but the other archive
formats require the appropriate program to be installed as a helper.

Document Files (PDFs and the Like)

Emacs can display various types of formatted documents, in particu-
lar, PDFs152, OpenDocument (and older Microsoft Office) files, EPUB 152 There is a 3rd-party Emacs package

available in Melpa-Stable called PDF
Tools that provides enhanced handling
of PDFs; see below.

e-books, PostScript, and DVI files. (Since most of these documents
aren’t plain text, Emacs needs to be running in graphical mode to

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Archives
https://github.com/politza/pdf-tools
https://github.com/politza/pdf-tools

192 keith waclena

display them; otherwise it will necessarily fall back to a degraded
view.)

All of these file types require some supporting non-Emacs soft-
ware to be installed via your operating system’s package manager,
and EPUB files also require a 3rd-party Emacs package; see Table 13.

Format Requires
PDF MuPDF153or GhostScript
EPUB UnZip and nov154

OpenDocument, .docx UnZip, unoconv and GhostScript
PostScript GhostScript
DVI GhostScript or TEX Live
Microsoft .doc unoconv

Table 13: Prerequisite Software for
Document Viewing

153 MuPDF does a better job on PDFs
than GhostScript, so its a good idea
to install it even if you already have
GhostScript installed.
154 nov is a 3rd-party Emacs package
available from the Melpa-Stable reposi-
tory.

All of these document types (except EPUB) are handled by
doc-view-mode, which provides scrolling and paging commands

(somewhat similar to view-mode); see Table 14.

Key Action
RET, C-n, <down> scroll one line forward (or next page)
C-p, <up> scroll one line backward (or previous page)
SPC scroll one window forward (or next page)
DEL, S-SPC scroll one window backward (or previous page)
n, <next> go to Next page
p, <prior> go to Previous page
< go to top of page
> go to bottom of page
M-< go to beginning of document
M-> go to end of document

Table 14: doc-view-mode Scrolling and
Paging Commands

There are six commands to change the size of the page text:

P assure full Page is visible in window
H assure full Height is visible in window
W assure full Width is visible in window
+ enlarge the page text
- shrink the page text
0 reset the page text size

If the document you’re viewing is one that you’re also authoring
(say in LATEX, org-mode, or some other markup language), you can
update it after you’ve made changes by reverting the Buffer with the
g (revert-buffer) command (or equivalently, r). But I recommend
using M-x auto-revert-mode (see Reverting Buffers); you can add this
snippet to your init file to make it your default for doc-view-mode:

Init File
(add-hook 'doc-view-mode-hook 'auto-revert-mode)

https://mupdf.com/
https://www.ghostscript.com/
https://www.info-zip.org/UnZip.html
https://www.info-zip.org/UnZip.html
http://dag.wiee.rs/home-made/unoconv
https://www.ghostscript.com/
https://www.ghostscript.com/
https://www.ghostscript.com/
https://tug.org/texlive/
http://dag.wiee.rs/home-made/unoconv
https://www.gnu.org/software/emacs/manual/html_node/emacs/Document-View
https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Revert

use gnu emacs the plain text computing environment 193

Toggling the Display Mode

All these document formats have an underlying encoding. PostScript
and PDF files really have a plain-text encoding; DVIs have a binary
encoding, and EPUBs and OpenDocument files are Zip archives that
contain several files in a variety of formats. The point being, you
might want to view the underlying encoding, the raw data, rather
than view the document. The command C-c C-c (doc-view-toggle-
display) will toggle back and forth between the two views.155 155 In an EPUB’s nov-mode, the com-

mand for this is nov-reopen-as-

archive.

Just the Text, Please

Viewing “documents” may sometimes be necessary, and even su-
perficially attractive, but it clashes with the very nature of Emacs as
a plain-text engine. These documents are basically images, and the
more you have to deal with them, the more you’ll miss the ability to
use keyboard macros, powerful searching, textual objects, and all the
rest of the synergistic power that Emacs provides. This can be miti-
gated somewhat with C-c C-t (doc-view-open-text), which toggles
the Buffer to a plain-text version of the document, where you can use
all your powers. C-c C-c (doc-view-toggle-display) will toggle
back to the graphical view.

Searching

Searching in doc-view-mode is awkward compared to searching in
plain text Buffers because it can’t highlight the matched hits the way
isearch-forward does156. C-s (doc-view-search) does a regular 156 But PDF Tools can.

expression search forward, but since it can’t highlight the hits, it sim-
ply reports the number of hits in the Minibuffer with a message like
“DocView: search yielded 5 matches.” Now hit C-s again to jump to
the page with the first hit. Subsequent C-s’s advance to further pages
with hits. To initiate a brand new search (with a prompt for a new
regexp), use C-u C-s. The same procedure works backwards with
C-r (doc-view-search-backward).

This is obviously a little sad, as it can be tricky to spot matches in
a page. One solution for arbitrary document formats is to switch to
text mode with C-c C-t and do your search there. I find this pretty
satisfactory, really.

Additionally, after you’ve initiated a search and moved to a given
page of hits, you can pop up a GUI tooltip window that lists all the
hits on the page with some context by hitting C-t (doc-view-show-
tooltip).

But for PDFs, PDF Tools implements incremental search in a com-
pletely normal manner, with highlighting of the hits in the graphical

https://www.gnu.org/software/emacs/manual/html_node/emacs/Document-View
https://www.gnu.org/software/emacs/manual/html_node/emacs/Document-View
https://www.gnu.org/software/emacs/manual/html_node/emacs/Document-View
https://www.gnu.org/software/emacs/manual/html_node/emacs/Document-View
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/DocView-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/DocView-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/DocView-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/DocView-Searching

194 keith waclena

view. Highly recommended.

Slicing

Since graphical documents are fundamentally designed with print
in mind, they often have a large amount of whitespace around their
edges, sometimes excessive amounts (I’m looking at you, default
LATEX format. . .). A more compact view with minimal borders can be
achieved with the slicing commands. Easiest to use is s b (doc-view-
set-slice-from-bounding-box) which does the slice automatically;
you can also manually set the slice with the mouse after executing
s m (doc-view-set-slice-using-mouse). To restore the whitespace,
invoke s r (doc-view-reset-slice).

Better PDF Handling with PDF Tools

If you install the 3rd-party package pdf-tools, you will have a much-
enhanced version of doc-view-mode for PDFs (only). It requires you
to install the external package poppler from your OS package man-
ager.

Some of its advantages are that pages are rendered into memory
on the fly157; it has a true incremental search with highlighted hits 157 doc-view-mode renders all the pages

at once into temporary files (though
it pops up the first page as soon it’s
ready).

in the graphical view and even has M-x occur; you can follow links;
make and view annotations; manipulate attachments; and display a
document outline (table of contents).

C-c C-c will toggle between pdf-view-mode and doc-view-mode;
there are a few things PDF Tools can’t do that doc-view-mode can.

I recommend auto-revert-mode for pdf-view-mode also:
Init File

(add-hook 'pdf-view-mode-hook 'auto-revert-mode)

Image Files

You can view image files (Emacs knows dozens of formats) as well as
document files. Just visit an image file and it will be displayed (only
in a graphical mode Emacs, of course). There are two non-graphical
displays: C-c C-c (image-toggle-display) toggles between graph-
ical and the raw underlying bytes (you’ll be in fundamental-mode),
while C-c C-x (image-toggle-hex-display) will switch to a hex-
dump display of the raw data (see Binary Data Files).

Browsing Images

While viewing an image in image-mode, you can visit the next image
file158 in the same directory with n (image-next-file); p (image- 158 In alphabetical order.

https://www.gnu.org/software/emacs/manual/html_node/emacs/DocView-Slicing
https://www.gnu.org/software/emacs/manual/html_node/emacs/DocView-Slicing
https://poppler.freedesktop.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Auto-Revert
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode

use gnu emacs the plain text computing environment 195

previous-file) goes the other way; these commands reuse the same
Buffer and Window and so don’t fill your Emacs with image Buffers.
w (image-mode-copy-file-name-as-kill) will copy the absolute
pathname of the file to the Kill Ring.

You can also mark images with m (image-mode-mark-file) so
that you can define a collection of files for later manipulation. This
works by setting marks in the Dired Buffer of the image directory159; 159 The Dired Buffer will be opened

automatically in the background if you
don’t already have one.

when you’re done, you can switch to the Dired Buffer and do, well,
anything: change permissions, tar or zip up the files into an archive,
copy or mass rename the files, or use Tramp to upload the files to
another machine. Dired also has two modes for viewing thumbnails
of image files.

Resizing Images and Animations

When you visit a file it will be resized to fit the Window. If you resize
the Window, by default the image will be resized with it. There are
several commands for explicitly scaling the image; if you do this, the
automatic resizing when the Window size changes will be disabled
until you reset the image size with s 0; see Table 15.

Keys Action
s h Show full Height in window
s w Show full Width in window
s b Show Both full height and width in window
s o Show image unscaled at Original size
s 0 reset image scaling to auto
RET start or stop animating the current image160

Table 15: image-mode Scaling Com-
mands

160 If it’s an animated GIF.
If you set the image to its original, unscaled, size, you can scroll

it in the Window with most of the usual view-mode motion and
scrolling commands; see Table 16.

Key Action
SPC scroll image up
DEL, S-SPC scroll image down
C-b, <left> scroll image left
C-f, <right> scroll image right

Table 16: image-mode Scrolling Com-
mands

Binary Data Files

We’ve just seen that, while Emacs is primarily a plain-text engine,
it has helpful modes for displaying graphical data files like images
and formatted documents. Most graphical data files are actually
binary data161, i.e., a sequence of arbitrary bytes not intended to be 161 But not all: consider SVG.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Image-Mode
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

196 keith waclena

interpreted as characters — letters, digits, punctuation — in any
particular character set162. There are many other types of binary data 162 Or as Emacs calls it, coding system.

files, including compiled executable programs, database files, audio
files, and so on. You may never need to view this raw data (unless
you’re a programmer or system administrator), but if you do, Emacs
is ready.

If you visit a binary data file for which Emacs doesn’t have a spe-
cial Major Mode defined, it will come up in fundamental-mode, and
you’ll be looking at the raw bytes. Here’s what the beginning of an
MP3 file from my collection looks like:

Figure 26: The Mae Shi’s Heartbeeps in
fundamental-mode

(See What Is Text? for an explanation of the cyan characters.) You
can see, for example, that the MP3 format allows for text in the audio
file (these are ID3 tags for metadata). Emacs supports a friendlier or
at least more traditional format for displaying binary data, called a
hex dump, via M-x hexl-mode—Figure 27 shows the beginning of the
same file in hexl-mode:

Figure 27: The Mae Shi’s Heartbeeps in
hexl-mode

(If you know you’re visiting a binary file you can skip the mode-
change via the shortcut M-x hexl-find-file.) As with many alternative-
display modes, you can switch back to the previous Major Mode with
C-c C-c.

All the usual motion commands work appropriately in hexl-mode,
and you can modify the Buffer by typing self-inserting characters
(hexl-mode also has a number of other ways to insert bytes — but
either way, make sure you know what you’re doing).

Note that because many binary data formats contain fixed-length
sections and have alignment restrictions163, hexl-mode puts the Buffer 163 Which is what makes the addresses

along the top and the left of the hex
dump display so useful.

in overwrite-mode (you can change that if you know what you’re
doing). If you’re going to edit binary data in fundamental-mode,
you probably want to turn on binary-overwrite-mode for the same
reason.

https://en.wikipedia.org/wiki/Character_encoding
https://www.gnu.org/software/emacs/manual/html_node/emacs/Coding-Systems
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/ID3
https://en.wikipedia.org/wiki/Hex_dump
https://www.gnu.org/software/emacs/manual/html_node/emacs/Minor-Modes
https://www.gnu.org/software/emacs/manual/html_node/emacs/Minor-Modes

use gnu emacs the plain text computing environment 197

Editing binary files is only for Real Programmers and not the faint
of heart, but if you have to do it, it actually works in Emacs: which is
to say, it won’t work in many other editors, which may corrupt the file
when you save it (say by deleting or adding white space or helpfully
converting assumed-character sets). What you see in the Buffer in
fundamental-mode or hexl-mode in Emacs is exactly what will get
written to disk.

UNFINISHED Quoting File Names

UNFINISHED Filesets

References

• Ashley, Mike. 1999. The GNU Privacy Handbook. Cambridge, MA:
Free Software Foundation. https://www.gnupg.org/documentation/
guides.html.

• Free Software Foundation. 2017. The GNU Privacy Guard Manual.
Cambridge, MA: Free Software Foundation.. Read in Emacs with
M-x info-display-manual RET gnupg RET.

• Post, Ed. July 1983. “Real Programmers Don’t Use Pascal.” Data-
mation. https://www.ee.ryerson.ca/~elf/hack/realmen.html.

https://en.wikipedia.org/wiki/Real_Programmers_Don't_Use_Pascal
https://www.gnupg.org/documentation/guides.html
https://www.gnupg.org/documentation/guides.html
https://www.ee.ryerson.ca/~elf/hack/realmen.html

Directory Editing with Dired

Emacs is thought by the uninitiated to be a (mere) text editor, so of
course it can edit files. But it can also edit directories (“folders” to
some). What does it mean to “edit” a directory? It means to do the
sorts of things that are normally done with Unix shell commands
(like cp(1), rm(1), or chmod(1)) or a file manager, like Windows
Explorer (File Explorer), Apple’s macOS Finder, or the venerable
Norton Commander and its Unix clone, Midnight Commander.

Emacs handles directories via a special Major Mode, dired-mode
(Dired for short). Dired was one the first file managers, having ex-
isted in ITS TECO Emacs since at least 1978. Dired is to files what
Buffer Menu is to Buffers.

To invoke Dired, just visit a directory, rather than a file, with
C-x C-f (find-file) or any other file-visiting command. (Make sure
your completion system doesn’t instead helpfully choose a filename
within that directory.) You can also invoke Dired directly with C-x d

(dired). The result will be a Buffer that looks like the output of the
Unix ls(1) command with its -l option164. Here’s the source code 164 On Microsoft Windows, where ls(1)

doesn’t normally exist, Emacs emulates
it in Elisp.

directory of one of my Emacs packages:

Figure 28: C-x d (M-x dired)

This is not the same as the result of M-! (shell-command) ls -l

~/src/refer-mode which would look superficially similar; nor is it
the same as M-x list-directory. For one thing Dired has colorized

https://en.wikipedia.org/wiki/File_manager
https://en.wikipedia.org/wiki/File_Explorer
https://en.wikipedia.org/wiki/File_Explorer
https://en.wikipedia.org/wiki/Finder_(software)
https://en.wikipedia.org/wiki/Norton_Commander
https://en.wikipedia.org/wiki/Midnight_Commander
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Directories

200 keith waclena

some of the filenames, but most importantly, rather than being in
fundamental-mode, the Dired Buffer is in dired-mode.

In dired-mode you can of course move around in and search the
Buffer with all the usual commands you already know, but the Buffer
is read-only so you can’t modify it165, and many printing charac- 165 But see Writable Dired, below.

ters are bound to useful commands for manipulating the files. For
example, if you move Point to any of the lines representing a file,
then hitting RET invokes dired-find-file and visits that file in a new
Buffer.

Dired is even more useful with the many enhancements from the
Dired Extra package. I recommend adding this to your Init File:

Init File
(add-hook 'dired-load-hook (lambda () (require 'dired-x)))

and this chapter will assume you have done so.

Basic File Operations

Table 17 lists some of the basic Dired file operations; the Unix column
gives roughly analogous shell commands. All the commands operate
on the file named on the current line — you don’t have to have Point
precisely on the filename part of the line. Some of the commands
operate immediately (e.g., the file visiting commands), but most will
either ask for confirmation or for additional information. C will ask
for the name of the new, copied, file; M will ask for the new file mode;
D will ask if you’re sure you want to delete the file, and so on.

Most of these commands can be applied to multiple files; see be-
low.

Subdirectories

Inevitably some of the files in your Dired Buffer will be directories
themselves (initially at least, every Dired Buffer will contain the
standard Unix . and .. directories). There are two ways to work
with the contents of a subdirectory:

• open it in its own Dired Buffer (just use any of the Dired file visit-
ing commands such as RET, e f, o, or a), or

• insert (expand) its contents into the current Dired Buffer with i (
dired-maybe-insert-subdir).

Both approaches have merit. I usually prefer inserting unless I
want to start working in two-panel mode with Dired DWIM.

When you insert a subdir, it looks much like it does when you run
ls -lR. Here I’ve issued the i command from the makefiles line:

https://www.gnu.org/software/emacs/manual/html_node/dired-x/index.html

use gnu emacs the plain text computing environment 201

Key Unix Action
RET, e, f cat visit (Edit, Find) this line’s file
a . . . and clobber Dired buffer
o . . . in other window
v more, less . . . in view-mode

^ ls .. open Dired on the parent of this directory
F visit all marked files
C cp Copy file
c tar -cZ Compress files into a tar archive
D rm Delete file
G chgrp change Group
H ln make Hardlink to this file
i insert this subdirectory into Dired
k vanish (“Kill”) marked lines (not files)
M chmod change Mode (permissions)
O chown change Ownership
P lpr Print file
R mv Rename file
S ln -s make absolute Symlink to this file
T touch update file’s Timestamp
Y ln -s make relative symlink to this file
w copy this file’s basename to the kill ring
0 w . . . absolute pathname
C-u w . . . relative filename
W firefox view this presumably HTML file in your Web browser
Z gzip, tar (un)compress and/or (un)tar this file
= diff compare this file to another
+ mkdir -p create a new subdirectory
!, X, & run shell command on file (see below)
? 1-line help or describe errors
B Byte-compile elisp files
L Load elisp files into Emacs
: d Decrypt file
: e Encrypt file
: s Sign file
: v Verify signature

Table 17: Basic dired File Operations

202 keith waclena

-rw-r--r-- 1 keith keith 231 Oct 16 2008 Makefile

drwxr-xr-x 2 keith keith 4.0K Jun 29 13:29 makefiles

-rw-r--r-- 1 keith keith 437 Feb 7 17:34 README.ascii

/home/keith/src/refer-mode/makefiles:

total used in directory 28K available 93.5 GiB

drwxr-xr-x 2 keith keith 4.0K Jun 29 13:29 .

drwxr-xr-x 4 keith keith 4.0K Jun 30 13:07 ..

-rw-r--r-- 1 keith keith 290 Jan 19 17:15 Makefile.gnumake

-rw-r--r-- 1 keith keith 1.2K Jan 19 17:18 Makefile.help

-rw-r--r-- 1 keith keith 1.2K Feb 7 17:35 Makefile.org

(If you type i on a non-directory, it’s an error; if you type it on a
directory that’s already inserted, Point will jump to the first file in
that subdirectory.)

The subdirectory header lines — e.g. /home/keith/src/refer-
mode/makefiles: in the above — support some special actions. Typ-
ing l (dired-do-redisplay) on one of these lines updates the con-
tents, so that a file newly created (by some other program) in the
subdirectory will appear, deleted files disappear, and any changes
to file sizes, permissions, etc, will also be updated. $ (dired-hide-
subdir) will toggle the visibility of the contents of the subdir, leaving
the header line.

< and > move Point from directory file to directory file in the
Buffer, and the usual list-motion key bindings (C-M-n, C-M-p, C-M-u,
C-M-d) move in terms of inserted directory header lines.

When any subdirectories are inserted, all the files visible in them
can be manipulated along with all the files in the directory proper;
this includes all the file marking commands discussed below.

Compressing and Archiving Files

Z (dired-do-compress) is somewhat special. If applied to a single
regular file, or several marked files, it compresses or uncompresses
them, based on the file extension166. 166 For the compression case, gzip is

used.If applied to a directory (a subdirectory of the Dired Buffer, which
includes the . and .. entries), Z creates a compressed tar archive
of all the files in that directory167. If applied to an archive file, the Z 167 If that tar archive already exists, it is

updated so that its contents match the
current state of the subdirectory.

command will extract its contents. Dired knows some 17 compres-
sion and archive types.

Dired is the easiest way I know to create a tar archive containing a
precise and arbitrary set of files. It’s easy to tar up a directory of files
from the shell with tar cvzf archive.tar.gz some-directory. But
what if you only want a subset of the files in some-directory? Maybe
just the .mp3 files but not the .jpg and .pdf files, but including the
README.txt? You can carefully list all the files to be included on

https://en.wikipedia.org/wiki/Gzip
https://en.wikipedia.org/wiki/Tar_(computing)

use gnu emacs the plain text computing environment 203

the command line: pretty tedious! Or use tar’s --exclude option,
but that’s going to be even more tedious if there are lots of files to
exclude.

With Dired, it’s easy. Just use the powerful file marking com-
mands to select exactly the files you want, and then invoke c (dired-
do-compress-to), and the tar file will contain exactly the files you
marked.

Deleting Files by Flagging

In addition to D (dired-do-delete), which deletes the current file,
you can take a more thoughtful approach to cleaning up a directory
by flagging a set of files for deletion, and then, after suitable con-
templation, delete them all. The command d (dired-flag-file-
deletion), rather than deleting a file, sets the D flag in the Dired
Buffer; here I’ve typed d on all the squiggle-file (backup file) lines:

D -rw-r--r-- 1 keith keith 436 Jan 19 16:49 README.org~

-rw-r--r-- 1 keith keith 50K May 1 15:47 refer-mode.el

D -rw-r--r-- 1 keith keith 1.2K Dec 22 2017 refer-mode.el~

-rw-r--r-- 1 keith keith 21K Jun 28 15:30 refer-mode.org

D -rw-r--r-- 1 keith keith 1.6K Sep 7 2020 refer-mode.org~

If you change your mind about any of them, you can undo the flag
with u (dired-unmark). When you’re ready, you can actually execute
all the deletions with x (dired-do-flagged-delete). The confirma-
tion prompt will clearly list all the files about to be deleted to help
avoid tragic mistakes.168 168 This double confirmation of mass

deletes really appeals to my paranoid
nature.

For more convenience in cleanup, ~ (dired-flag-backup-files)
will mark all backup files, and the command % & (dired-flag-
garbage-files) will add D flags to all the files that look like “garbage”169 169 By default, LATEX detritus; you can

customize dired-garbage-files-

regexp and add your own detritus.
and % d (dired-flag-files-regexp) will flag all files whose names
match a regular expression.

The flagging commands—d and its friends—are actually a special
case of the general Dired concept of marking.

Marking Files

When manipulating files in the shell, you can use wildcards (glob
characters) to handle multiple files at once. Dired itself doesn’t sup-
port wildcards, but it has a few (superior) tricks up its sleeve.

Most of the basic commands in Table 17 take a numeric argument;
given an argument of N, the command will be applied to the next
N files. So C-u 2 D will delete the file on the current line and the
file on the line after it. dired-mode is descended from special-mode

and like most Special Modes, you can use the digits alone as numeric
arguments, so just plain 2 D is equivalent.

https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Glob_(programming)

204 keith waclena

However, this is really only ever used for a very small number of
files, like two or three, because having to count is both annoying and
error-prone. On top of that, the files you want to operate on might
not be contiguous! The solution is to mark the set of files of interest.

We saw above how the d command flags files for deletion, but
Dired also has a general purpose mark, spelled *. You can apply
this mark to any file or directory (and advance Point to the next file)
with m (dired-mark); u (dired-unmark) will remove the mark on
the current line and advance (DEL unmarks and moves in reverse),
and U (dired-unmark-all-marks) will remove all the marks in the
Dired Buffer. m itself takes a numeric argument; or, if the Region is
activated, will mark all the files within it. Finally, if you hit m on an
expanded subdirectory header line, it will mark all the files within
that directory (if you hit m on a directory proper, it only marks that
directory filename). Here I’ve marked two README files; in addition to
the * mark, the filenames are colored a bold orange:

drwxr-xr-x 2 keith keith 4.0K Jun 29 13:29 makefiles

* -rw-r-r- 1 keith keith 437 Feb 7 17:34 README.ascii

* -rw-r-r- 1 keith keith 455 Jan 19 19:26 README.org

-rw-r-r- 1 keith keith 436 Jan 19 16:49 README.org˜

Sometimes it would be easier to mark the files you’re not inter-
ested in, rather than those you are. Just mark the uninteresting files
and hit t (dired-toggle-marks), and the marks will all flip. The
easiest way to mark all the files in the Dired Buffer is to hit t when
no files are marked (you can always achieve that state with U, or can
memorize the sequence U t as “mark all files”).

You can move from marked file to marked file with M-} (dired-
next-marked-file) and M-{ (dired-prev-marked-file).

When there are * marks in the Buffer, most of the basic Dired com-
mands will operate on all the marked files, instead of on the current
line.170 So to copy 10 files to a different directory, just mark the files 170 You can override this by giving a

command a numeric argument of 1,
which will force it to operate on the
current line (actually any numeric
argument overrides the Active Region
or marks and operates on the given
number of files at Point).

and say C. Some commands have to make specific interpretations in
the presence of marks, or may ignore them if they just don’t make
sense.

Some Dired commands will add their own special marks to files.
The C command adds a C mark to the new file that just got created
by the copy; the H command will likewise add an H mark and the S
and Y commands an S mark to the new files they create171. Here’s 171 This is assuming that the new files

are visible in some Dired buffer. You
won’t see any marks if you can’t see the
new files.

part of my Dired Buffer after I’ve copied (with the C command) the
upload.el file to the name Y, hard-linked it to X with the H command,
and relatively-symlinked it to Z (with the Y command). That’s three
new files that weren’t in the directory (and hence weren’t in the
Dired Buffer) previously.

use gnu emacs the plain text computing environment 205

-rw-r--r-- 1 keith keith 3.6K Jun 26 13:44 TODO

H -rw-r--r-- 2 keith keith 251 Jan 19 16:40 X

S lrwxrwxrwx 1 keith keith 9 Jun 28 15:02 Z -> upload.el

C -rw-r--r-- 1 keith keith 251 Jan 19 16:40 Y

-rw-r--r-- 2 keith keith 251 Jan 19 16:40 upload.el

These marks serve as an indicator that the operations were done
and these files won’t be affected by any commands operating on the
standard * or D marks that may be in the Buffer. But they aren’t just
cosmetic.

Suppose you make copies of 10 files. All the copies will be marked
with the C mark. Now perhaps you want to change the file permis-
sions of the copied files to read-only. Just change the C marks to *
marks with * c (dired-change-marks) and now M (dired-do-chmod)
will change the modes of the 10 copied files.

The Mark Keymap

Manually marking files with m may not seem like any competition for
shell glob patterns, so Dired has a whole slew of commands to make
marking multiple files easier; they can be found on the *-prefix key in
dired-mode; see Table 18.

Key Action

* * mark all executable files

* / mark all directories

* @ mark all files that are symlinks

* . mark all files with a given file extension

* % mark all files matching a regexp

* s mark all files in the current Subdirectory

* O mark all Omitted files

* c Change all given marks to some other mark

* N display Number of marked files

Table 18: The Dired Mark Keymap

If you’re familiar with the ls(1) command’s -F (--classify)
option, the mnemonics for * *, * / and * @ will be obvious. * %’s
mnemonic is that Dired has a % prefix full of regexp operations.

Issue any of these marking commands and the matching files will
be marked with *’s. You can combine several of them, and also mix
in t, m and u commands until you’ve got exactly the combination of
files you want.

All of these marking commands will instead unmark if given a
prefix argument via C-u (universal-argument).

Why is there no command to mark plain files, i.e., non-directory
files? That seems like an oversight! The reason is that you can achieve
that effect in several ways: you can mark all the files with U t and

https://www.gnu.org/software/emacs/manual/html_node/emacs/Arguments

206 keith waclena

then say C-u * / to unmark the directories, or you can unmark all
with U, mark the directories with * /, and then toggle the marks with
t.

* N (dired-number-of-marked-files) is a little out of place in
the * Keymap, in that it doesn’t mark any files, but it’s a handy com-
mand that will display in the Echo Area the number of marked files
and their total size.

Mass Name Changes by Regular Expression

A classic file management problem that was left unsolved by the
founding fathers of Unix (Ken, Dennis, Brian, et al.) is operating on
many files while changing their names according to some pattern: for
example, copying a bunch of files but adding a .bak extension, re-
naming files to their lowercase equivalents, and the like. People used
to resort to verbose and error-prone shell for-loops or scripts involv-
ing sed(1) or perl(1), and a number of special-purpose utilities have
appeared over the years to address this need (such as rename(1),
mmv(1), zsh(1)’s zmv), but how to do it is still a popular query in the
search engines.

Dired provides a suite of commands to handle this, on the % prefix
(mnemonic: kind of like C-M-% (query-replace-regexp)); see Table
19.

Key Action
% R, % r Rename files with new names
% l rename files to Lowercase equivalents
% u rename files to Uppercase equivalents
% C Copy files with new names
% H Hardlink files with new names
% S Symlink files with new names
% Y symlink files relatively with new names
% m Mark files that Match regexp
% g mark files containing regexp matches

Table 19: Dired by Regular Expression

Note that for all these commands, we are using Emacs regular ex-
pressions, not shell wildcard (glob) patterns!

The exemplar for all these commands is % R (dired-do-rename-
regexp). Suppose we want to rename the two files README.ascii and
README.org to about.ascii and about.org — in other words, we
want to change the README part of each filename to about, preserving
any other parts of the filenames (such as, the extensions).

First, we have to mark the two README files, and then invoke %

R.172 The prompts go as follows: 172 Or, if they happen to be contiguous
in this directory, we can put Point on
the first and say 2 % R.Rename from (regexp): README

https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace

use gnu emacs the plain text computing environment 207

Rename README to: about

and now we start renaming:

Rename ‘README.ascii’ to ‘about.ascii’? [Type yn!q or C-h]

This prompt is similar in spirit to the way query-replace-regexp

works:

y or SPC to perform this renaming
n or DEL to skip to the next renaming
! to perform this and all renamings with no questions
q skip this renaming and quit
C-h explain these options

If we don’t choose ! or q, then we’ll be asked the same question
about each of the remaining files:

Rename ‘README.org’ to ‘about.org’? [Type yn!q or C-h]

You need to be familiar with regular expressions to do fancier
stuff173; for example, we can add a .bak extension to a set of files by 173 But then you really need to be

familiar with regexps to be an Emacs
(or Unix) user.

specifying $ as the from regexp and .bak as the replacement (because
$ is the regexp that matches the end of any filename).

Note that the regexp is only applied to the basename of the file —
e.g. README.org not /home/keith/src/refer-mode/README.org. If
you give any of these commands a 0 numeric argument, then the
regexp is applied to the absolute pathname, and you can then modify
the directory structure as well.

% l and % u are convenient ways to do a simple case transforma-
tion on the entire basename of the file (including the extension if
any).

The % C, % H, % S, and % Y commands work like % R, mutatis mu-
tandis.

Finally, we have two commands that merely mark files (with no
action) based on regular expressions. They consider all the files in the
Buffer and mark the ones that match. % m (also available as * %) just
does the match based on the file basename, so % m x would mark all
files whose names contain the letter x.

% g is just like % m except that it applies the regexp to the com-
plete contents of the files, rather than to their names. It marks all the
files that contain a match for the regexp. Think of it as the Grep of
marking commands.

If you give either of these last two commands a prefix argument,
they unmark, instead of marking.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace

208 keith waclena

What Went Wrong?

We’ve learned a number of useful file manipulation commands, but
we have to face the fact that sometimes, some of them are going to
fail. Errors in Emacs are usually simple: you hear a beep and there’s
a message in the Echo Area telling you what went wrong. But if
you’re having Dired act on several, even hundreds, of files in one
stroke, you neither want to miss an error, nor be swamped by too
many.

Suppose we try to copy a bunch of files to a different directory, but
it turns out we don’t have permission. Dired will display a message
like this:

Copy: 17 of 17 files failed--type ? for details ((refer-mode.org README.org ...))

and we can use ? to pop up the *Dired log* Buffer for a complete
record of which operations failed (and why); in this case we’d see
lines like:

Thu Jul 1 11:58:13 2021 Buffer ‘refer-mode’

Copy: ‘/home/keith/src/refer-mode/GNUmakefile’ to ‘/etc/GNUmakefile’ failed:

(file-error Opening output file Permission denied /etc/GNUmakefile)

Writable Dired

Dired Buffers are read-only Buffers, so that you can’t accidentally
corrupt the contents and confuse Dired. What if you edited the name
of one of the files and then tried to operate on it? You’d get errors.

On the other hand, what if, when you edited the name of a file, it
magically renamed the file to the new name? That would be an easy
and natural way to rename files. More importantly, it would allow
you to rename files using all your Emacs skills: use M-l (downcase-
word) to change part of a filename to lowercase; use M-% (query-
replace), C-M-% (query-replace-regexp), or Rectangle commands to
mass-rename a set of files without needing to mark them: even use a
Keyboard Macro!

This is exactly what Wdired allows. You simply switch the Dired
Buffer from the default read-only mode with the natural keystroke
C-x C-q (dired-toggle-read-only) which you’ll recall normally tog-
gles read-only-mode on and off. The Mode indicator in the Modeline
will change to Editable Dired, and now you can change filenames
via whatever means you like. You can even change a file name like
foo.org to /tmp/foo.org to move it to a different directory; you can
use relative or absolute paths for this, and Dired will create new
subdirectories as needed!

https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace

use gnu emacs the plain text computing environment 209

The changes don’t happen instantly, so you can take your time;
edit one filename, think about things, and edit another. Maybe then
change one of them back (with Undo if you like!). When you’re done
with your changes, you commit them with C-c C-c and then all your
renames happen at once174; the Buffer is then restored to the normal 174 You can also commit your changes

by toggling back to read-only with C-x

C-q.
read-only dired-mode. If you experience Renamer’s Remorse, you
can instead cancel all your changes with C-c ESC.175

175 Or just kill the Dired Buffer.
But there’s more. If you have a symlink, you can edit either the

symlink name, its target, or both. If you kill or delete a filename
completely, the file will be deleted.176 And if you edit the permission 176 Actually, in an abundance of caution,

it will be flagged for deletion with a D,
and you can x it after exiting Wdired.

string of a file, it will be chmod’ed (so you could remove the write
permissions on a file by editing -rw-r--r-- into -r--r--r--).177 Any

177 In another abundance of caution, this
feature is off by default. You can enable
it with M-x customize-variable RET

wdired-allow-to-change-permissions

RET.

of these changes only take effect when you commit.
This trick of editing a read-only Buffer to effect real, but indirect,

changes is used elsewhere in Emacs.

Two-Panel Dired

Many file managers use a two-panel design: they divide a window
into two (usually side-by-side), to make it easy to copy or move files
from one directory to another. It’s useful to run Dired this way as
well. I recommend adding this to your Init File:

Init File
(setq dired-dwim-target t) ; suggest other visible dired buffer

With this setting, you can just arrange for two Dired Buffers to be
visible, and when you give any command that needs a target direc-
tory (like C (copy) or R (rename)), the default will be the directory of
the other Dired. You don’t have to accept this new default destina-
tion when prompted—you can override it in any individual case—
and this setting only has an effect when you have two visible Dired
Buffers.

DWIM, by the way, stands for “Do What I Mean”, and is named
for an error-correcting feature in an old Lisp system dating from
1966.

Searching and Replacing

Normally, if you want to search through all the files in a directory
you use M-x grep, M-x lgrep, or M-x rgrep (see Meet the Greps). But
you can also use the power of Dired marks to limit your search to a
possibly idiosyncratic selection of the files in your Dired Buffer.

Just set your marks and run A (dired-do-find-regexp); any
marked directories will be searched recursively, and if you don’t
have any marks, the file or directory at Point will be searched.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching

210 keith waclena

A Xref Buffer containing all the hits will pop up and you can navi-
gate through them; see Figure 29.

Figure 29: Search for “keys” within files
in Dired

This search is really more of an Occur. You can also do an Incre-
mental Search through the marked files. This is done with M-s a C-s

(dired-do-isearch) or M-s a C-M-s (dired-do-isearch-regexp)178. 178 A couple of handfuls, those are. . .

These are basically entry points to multi-isearch-files, with the
marked files eliminating the need to enter a bunch of filenames; see
Multi-Isearch for details

You can also do a search and replace across your marked files with
Q (dired-do-find-regexp-and-replace). This pulls up all the files
with hits, one at a time, and in each runs a M-% (query-replace) for
you. There are other ways (which I prefer) to do a search and replace
across multiple files; see Xref and Writable Grep.

Diffing and Comparing

You can compare (“diff”) the file at Point with another file with = (
dired-diff). You’ll be prompted for the second file; if the first file
has a backup file, that will be the default (and vice versa). If the
Region is active, the files at Point and Mark are the ones compared.
A prefix argument will let you specify the options given to diff(1).

You can also compare two directories in an interesting manner.
Open two Dired Buffers on two different directories179; for the best 179 For your first try, make sure there are

no Dired marks in either directory.demonstration, the directories should be similar but not identical, e.g.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace

use gnu emacs the plain text computing environment 211

one might be an older version of the other. Then, in either Buffer, say
M-x dired-compare-directories. Hit RET at the prompt:

Mark if (lisp expr or RET):

Now you’ll (most likely) see that there are marked files in both di-
rectories: these are the files in each directory with unique names. So
in directory A, if the file foo is marked, it means that there is no file
named foo in directory B, and so on. Or, equivalently, the unmarked
files in each directory are those that also exist (with the same names)
in the other directory. Keep in mind that this comparison is done
purely at the level of the file names; the contents do not enter into it.

Even just as a visual aid, this is useful for eyeballing the differ-
ences between the two directories. You can make use of the marks
in either or both directories to do further comparisons (with =), dele-
tions, or copying.

If you know a little Elisp, you can mark the files more precisely
than by comparing their names; you can mark them based on their
sizes, modification times, owner, permission, etc. Do:

C-h f dired-compare-directories

for more information.

Reverting and Sorting the Dired Buffer

The contents of a directory can change out from under Emacs, so you
can refresh Dired’s notion of the directory contents with g, which
is bound to revert-buffer (as you might expect). This will reveal
any new files, omit any files that were deleted outside of Emacs,
and make the displayed file sizes, permissions, etc reflect the current
state.

The l command (dired-do-redisplay) is a less broad version of
this: it only redisplays the info for the marked files (or next N files, if
given a numeric argument), or the files in a subdirectory, if issued on
a subdir headline.

You can also sort the Dired Buffer by modification time (most re-
cent files first), rather than the default alphabetical order, with s (
dired-sort-toggle-or-edit). With a prefix arg, you’ll be prompted
to set the options for the ls(1) command that lists the files; the de-
fault options are -al180; the -a option causes files whose names begin 180 The -l option is mandatory.

with . to be included. If you don’t want to see dot files, do C-u s

-l RET (removing the a option) and the Buffer will be refreshed to
exclude them. You can also throw in other ls(1) sorting options,
like -r, -S, -t; see the ls(1) man page with M-x manual-entry. New
options given in this manner are sticky in that they persist through
subsequent g’s.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting

212 keith waclena

While the -l option is mandatory, you can hide everything but
the filename with ((dired-hide-details-mode). That gives you a
minimalist skinny Dired Buffer. Another (brings the details back.

You can customize the default ls options by setting dired-listing-

switches in your Init File; I add -h (--human-readable) to print file
sizes in a friendlier format (like 1K, 234M, 2G), for example. But
check the variable’s documentation for details; some ls options can
break Dired.

Finally, the Dired Buffer supports a limited version of Undo,
bound to the usual keys (e.g. C-/). This command can’t magically
undelete files, but it can revert changes to the Buffer itself. You can
use it to recover changed marks, killed lines, or hidden subdirecto-
ries.

Omitting Uninteresting Files

Certain files can be considered uninteresting because you rarely want
to manipulate them (except perhaps to delete them): you typically
don’t want to visit them, copy them, or anything else. These files
include build artifacts; checkpoint, lock and backup files; and the .

and .. directories. The problem with these files in Dired is that they
take up screen real estate (requiring more scrolling), and often have
to be unmarked after you’ve marked, say, all directories, or all the
files that match a regexp.

You can omit these files from your Dired listing with C-x M-o (
dired-omit-mode), which toggles Omit Mode on and off. You can
also mark all the files that Omit Mode would omit with * O (dired-
mark-omitted).

If you’d like to have these files omitted from your Dired Buffers
by default, as soon as you open up any Dired Buffer, add this to your
Init File:

(add-hook 'dired-mode-hook 'dired-omit-mode)

You can un-omit them after that with C-x M-o.
The precise definition of which files are omittable is controlled by

the variables dired-omit-files and dired-omit-extensions. See
the Dired Extra manual for details and examples.

Running External Commands

If Point is on a file line in a Dired Buffer, then ! (dired-do-shell-
command) prompts for a command and runs it synchronously on that
file; & (dired-do-async-shell-command) does the same thing asyn-
chronously. So if Point is on a file foo.sh, and you want to know

https://www.gnu.org/software/emacs/manual/html_node/dired-x/Omitting-Variables
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/dired-x/index.html

use gnu emacs the plain text computing environment 213

how many lines or words are in that file, you just type ! wc, and
the result is displayed in the Echo Area; this is equivalent to M-! wc

foo.sh (except you didn’t have to type the filename), and the out-
put is handled in the same way. You won’t be surprised that & wc

is equivalent to M-& wc foo.sh, and runs the wc command asyn-
chronously.

But these commands are not exact equivalents. When you type !

the prompt looks like this:

! on foo.sh [sh]:

The sh in the brackets is the suggested default command, so if you
wanted to run this shell script rather than count its lines, you could
just hit return. There may be more suggestions than just the one
shown; you can use M-n (next-history-element) to scroll through
them in the usual way; see Future History. Emacs has commands to
suggest for 55 possible files types and you can of course add your
own via the dired-guess-shell-alist-user variable.

! and & operate on multiple files in the standard Dired ways,
via numeric arguments and marks. When you run a command on
multiple files, a Window will open above the prompt listing all the
files that will be affected—a nice reassurance.

What is the nature of the command?

Dired’s ! and & actually take an arbitrary shell command, so you can
add options to the command (e.g. ! wc -l) and it can even contain
pipes and other shell-specific stuff, with the filename appended to
the end of the command.

Emacs quotes all the filenames for you and the command is run
once for each file. So if you mark the files bar, baz, and foo, and
say ! wc, Emacs will run wc bar, wc baz, and then wc foo, syn-
chronously.

You can run just one wc command for all the files by saying !

wc *; this wildcard is interpreted by Emacs and NOT given to the
shell.181 Instead of expanding to all the files in the directory as it would 181 But only if the * is surrounded by

whitespace.in the shell, Emacs will put the list of filenames being operated on at
the location of the *, so cp * some-directory will work correctly182. 182 The Dired C command actually

performs this operation more easily, but
let’s pretend otherwise.

The filenames being operated on are the marked files, or the file at
Point, or the N files at Point if you uses a numeric argument of N, in
the usual Dired interpretation. The order of the files in the expanded
file list will match the order in which they occur in the Dired Buffer.

If you use ? instead of *, Emacs will run a separate invocation
of the command for each of the multiple files, just like in the no-*
case.183 What’s the point of this, then? Well, you can repeat the ? in 183 Note that this is not the usual shell

interpretation of its ? wildcard!

https://www.gnu.org/software/emacs/manual/html_node/emacs/Minibuffer-History

214 keith waclena

the command and Emacs replaces each ? with the same filename.
The silly command ! mv ? /tmp/ && touch ? will move each file
to /tmp/ and then replace it (in the original directory) with a new
empty file of the same name.

Again, this special interpretation of ? only applies if it’s sur-
rounded by whitespace. But there’s one more special wildcard:
`?`, which is interpreted exactly as ? except for the surrounded-by-
whitespace requirement. This means you can make backup files with
a command like ! cp ? `?`.bak.184 184 Though Dired’s % C command is

perhaps an easier or more natural way
to do that.

You mentioned running commands in parallel?

The & command operates exactly like the ! command, except that it
runs asynchronously. So if you want to run your external PDF viewer
on that Dired file, you probably want &. If you use & with N files,
without using * in the command, it will run N separate commands in
parallel.

Image-Dired

Dired can also be used as an image gallery, displaying thumbnails
of image files. Just mark the files you’re interested in185 and say C-t 185 You don’t have to carefully mark

only image files, so the quickest way
to see thumbnails for everything in the
directory is to mark all the files with a
simple U t (dired-toggle-marks).

C-t (image-dired-dired-toggle-marked-thumbs); see Figure 30. If
no files are marked, C-t C-t will display the thumbnail for the file at
Point.

Figure 30: Inline thumbnails in dired-

mode

You can of course see any image full-size by visiting its file, which
will naturally come up in image-mode, but doing this will eventually
clutter your Emacs with many image Buffers. If you just want to view
some images more transiently, rather than RET, use C-t i (image-
dired-dired-display-image), which will repeatedly use a single
Buffer called *image-dired-display-image*; within this Buffer f will
full-size the image and s will resize it back to the Window size. C-t x

use gnu emacs the plain text computing environment 215

(image-dired-dired-display-external) will display the image with
an external image viewer, outside of Emacs.

A limitation of Dired is that it can only list files one per line, so
you may have to do a lot of scrolling. Instead of inline thumbnails
you can pop up an additional Window containing a new Buffer of
thumbnails only. Again, mark the files of interest (or all of them) but
this time invoke C-t d to display the thumbnails Buffer; see Figure
31.

Figure 31: Image-Dired Thumbnails
Buffer

In the thumbnails Buffer, you can move around with the usual
motion commands; RET pops up the *image-dired-display-image*
Buffer with a view of the image corresponding to the current thumb-
nail, and SPC and DEL page the display Buffer forward and back-
wards through the images. The Dired Buffer is linked to your motion
through the thumbnails, so if you navigate to a thumbnail and then
jump to the Dired Buffer, Point will be on the file corresponding to
the thumbnail. You can also mark, unmark, and flag files from the
thumbnail Buffer.

Tagging and Commenting Images

Images can be tagged and commented from the Dired Buffer. The
image files themselves are not altered by this process; the tags and
comments live in a metadata file in your user-emacs-directory. This
allows you to set Dired marks on all the files with a given tag; after

216 keith waclena

you’ve done some tagging perhaps C-t f cat would mark all your
cat images.

Key Action
C-t t add a Tag to all the marked files
C-t c add a Comment to all the marked files
C-t e Edit both
C-t r Remove the given tag from marked files
C-t f mark all Files with given tag

Table 20: dired-mode Image Tagging
and Commenting Commands

Remote Directories

In addition to opening a directory on your local disk, Dired can also
open a directory on a remote computer, perhaps your office desk-
top at work. I almost didn’t think to mention this, because it’s in no
way a special feature of Dired, but just falls out of Emacs’s ability
to manipulate remote files via Tramp. So when you run Dired, if
you name a directory using Tramp’s remote file syntax, then natu-
rally the Dired Buffer is remote, and all the Dired operations—file
copies, renames, deletions, visits, even shell commands via ! (dired-
do-shell-command)—run on the remote host. Just as naturally, in a
local Dired, you can copy or rename a file to a remote host: when
prompted for the target filename, just use Tramp syntax. This even
works with the mass name-changing functions, and works seamlessly
in two-panel DWIM mode. See Tramp for details.

More Dired Entry Points

Normally C-x d (dired) is invoked with a directory name, but you
can also invoke it with a glob pattern: C-x d *.el will bring up a
Dired Buffer with all, and only, the Elisp files in the default directory.

And there are more ways to get a Dired Buffer than just C-x d.
C-x C-j (dired-jump) or C-x 4 C-j (dired-jump-other-window)

from within a file Buffer will open Dired on that file’s directory. M-x
find-name-dired will prompt you for a directory, and then for a
filename, possibly containing Unix wild cards (glob characters); it will
generate a Dired Buffer containing all the matching files under the
named directory, recursively. So you might want to run Dired on all
your Elisp source files under your source code directory with:

M-x find-name-dired RET ~/src RET *.el

This command is a convenient interface to the Unix find(1) com-
mand; find-dired is a more full-featured version that let’s you spec-
ify any find options you like. find-grep-dired is much the same,

https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired-and-Find
https://en.wikipedia.org/wiki/Glob_(programming)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired-and-Find

use gnu emacs the plain text computing environment 217

but limits the files to those that contain a Regular Expression as for
grep(1).

You can use find-name-dired to find files from anywhere on your
system if you give / (the top-level root directory) as the starting di-
rectory, but if you have a large disk with many thousands of files,
this can be slow. M-x locate is the Emacs interface to the Unix
locate(1) command that uses a database of filenames and so runs
much faster.186 M-x locate-with-filter has an additional prompt 186 Note that locate(1) only works if

your system is regularly updating its
database; this is outside of Emacs’s
purview.

for a Regular Expression that’s used to filter (limit) the hits.
You shouldn’t try to quote any of the arguments to any of the

find- and locate- commands—Emacs takes care of that for you—
with the exception of find-dired (because that one requires you to
enter a raw find command).

Many Major Modes provide custom entry points to Dired. For
example, doc-view-mode can pop up a Dired on its cache directory,
EMMS will open Dired on the music files in your playlist, and Projec-
tile will open Dired on your current project.

Third-Party Directory Tools

There are some 64 packages in MELPA that provide various enhance-
ments to Dired, like fancy multi-panel layouts, sidebars, displaying
icons next to the files, cleaning up duplicate files, and more. One of
the most useful is Pierre Neidhardt’s disk-usage package, which
finds the files and directories that are taking up the most space; see
Figure 32.

Figure 32: M-x disk-usage and Dired

References

• See “Dired” in the Emacs manual.

• Kremer, Sebastian and Free Software Foundation. 2022. Dired
Extra. Cambridge, MA: Free Software Foundation.. Read in Emacs
with M-x info-display-manual RET dired-x RET.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired-and-Find
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired-and-Find
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dired

Searching . . .

Searching is one of the most important Emacs skills. It’s pervasive:
since it works in (and across) your Buffers, it works, identically, not
only within a file you’re editing, but within the user interfaces (UIs)
of Emacs and its many subsystems—the Help system, Dired the
file manager, the Emacs documentation, your shells and terminals,
your mail, your calendar and diary, your web browser, your music
player—everything. Imagine if you could explore and find your way
around the UI—the menus and toolbar—of a GUI application like
your web browser the same way you can search the text of one of
its web pages. And to top it off, Emacs’s search facility is far more
powerful than that of any GUI application.

Searching can be divided into two major flavors: incremental search
style and occurrences style. Incremental Search, which you may think
of as “find as you type” — a now common user interface feature
invented in Emacs in the 1970s — is probably the most important.
It takes you hit-by-hit through all the match locations in that Buffer
(with highlighting).

Figure 33: Incremental Search in Action

Occurrences-style search works more like a web search engine:
you type in your query and Emacs pops up a new Buffer full of hits,
from any of which you can jump to the actual occurrence. There are
many forms of this, exemplified by M-x occur, which presents the

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search

220 keith waclena

matches from your current Buffer.

Figure 34: . . . Transformed to Occur
with a Keystroke

Occur also resembles the output of the Unix grep(1) command
(especially with the --color option turned on): the Buffer of hits is
like the lines of grep output, except you typically can’t click on a hit
in the terminal and be taken to that line of the matching file. That is,
unless you run grep under Emacs; see Meet the Greps.

Incremental Search

Incremental Search (Isearch) is a commonly used way to move around
when you’re editing text: it’s so fast and easy, I’ll even use it just to
move to a spot in the same line. As befits one of the most heavily
used features of Emacs, Isearch is very powerful and thus very com-
plex. But if you have an idea of what’s possible, you can start out
easy and add fancy features as you gain experience. I would say I use
most of these features, but not all, and a few were surprises when I
delved deep into the manual in order to write this chapter.

The command C-s (isearch-forward) starts a search and prompts
in the Minibuffer for a search string:

I-search:

Suppose you’re looking for occurrences of the word “and”: just start
typing it. As soon as you type the letter “a”, all the “a”’s visible in
the current window will be highlighted a light blue, except the very
next “a” after Point, which will be violet-red187; in fact, Point has 187 These are the colors I see in my

reverse-video color scheme; they may
be different for you.

been moved to this location. Now the prompt looks like:

Pending I-search: a

Add “n” to your search, and all the highlights will be updated: now
only occurrences of “an” will be highlighted, and if necessary, Point
will be moved ahead to the first match. Add your final “d” and now
only “and”’s are highlighted.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch

use gnu emacs the plain text computing environment 221

Pending I-search: and

If the first “and” after Point isn’t the one you want, just type C-s

again, and Point will advance to the next “and”; you can keep C-s’ing
through the hits. If the next hit is off-screen, the window will scroll.
When you’ve reached the “and” you wanted, just hit RET to terminate
the search; Point is now at the end of the chosen “and”.

The whole point of the incremental part of Isearch is that you often
don’t need to type the entire string that you’re searching for: once
Point reaches the right spot, just hit RET and you’re done. You can
also start C-s’ing ahead at any point. If you’re searching for the word
“Pneumonoultramicroscopicsilicovolcanoconiosis” command, there’s
a good chance you’ll have found it after “pn”; at any rate, you proba-
bly won’t have to type in all 45 characters.

Failing Searches and Making Corrections

If the string you’re searching for isn’t present in the Buffer, Emacs
will beep and you’ll see in the Minibuffer something like:

Failing char-fold I-search: zq

It’s likely that a prefix of your search string (here, “z”) is in the
Buffer, but the complete string (“zq”) is not. Perhaps you meant to
search for “zap”: just use DEL (isearch-delete-char) to delete the
“q” and make your correction.

If you’re typing quickly, you might get in a whole bunch of non-
matching characters at the prompt; that’s okay: you can delete them
all one at a time with DEL, but hitting C-g will delete all the non-
matching characters in one go.

When moving from hit to hit with additional C-s’s, you may over-
shoot the hit you want. DEL will “correct” this mistake too, taking
you back to the previous hit.

If you hit the end of the Buffer during a search, Emacs will like-
wise beep and indicate search failure; but if you hit another C-s,
your search will wrap around to the beginning of the Buffer and con-
tinue searching from there. The word “Wrapped” will appear in
the prompt to indicate this; if you go all the way around, returning
to your starting point, and keep going, the prompt will change to
“Overwrapped” to make it clear that you’ve seen all these hits al-
ready, and there are no more new ones.

Editing Your Search

Suppose you’ve started Isearching for the word “stolidity” and only
then noticed that you really meant “solidity”. You don’t have to do

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch

222 keith waclena

eight DEL’s and then type a “t” and then retype “olidity”: you can
put your Isearch into edit mode with M-e (equivalently, M-s e); now
you can use all the usual editing features of Emacs, as you usually
can in the Minibuffer, to go back and just delete that “t”. When your
edit is done, restart your Isearch with any of RET, C-s, or C-r188 and 188 To search in the reverse direction.

continue from there.

Aborting Your Search

Because C-g, usually keyboard-quit, in Isearch has the handy use of
zapping non-matching search characters, you need to use two C-g’s to
abort your search, leaving Point where you started.

Quick Search Exit

For the sake of editing speed, any other non-Isearch Emacs command
will also end the search successfully, and be immediately executed.
You could exit with M-f (forward-word), for example: C-s zap M-f is
equivalent to C-s zap RET M-f: both will leave Point at the end of the
word following “zap”.

Scrolling

Scrolling commands normally terminate the search and then scroll,
as per above, but I like to be able to scroll the window in mid-search,
to see what’s coming up (or what’s behind me). This Init File snippet
allows most scrolling commands (like C-v (scroll-up-command), M-v

(scroll-down-command), and C-l (recenter-top-bottom)) to work
this way.

(setq isearch-allow-scroll t) ; scroll while searching

The Region is Set for Free

When you end a search successfully, you’ll notice this message in the
Minibuffer:

Mark saved where search started

This means that the Region (though inactive) is now around the text,
from where you started the search to where you are now, and you
can do whatever you like to the region (kill, copy, or modify it). You
can jump back to where you came from with C-x C-x (exchange-
point-and-mark) or C-u C-SPC (set-mark-command).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/Scrolling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Scrolling
https://www.gnu.org/software/emacs/manual/html_node/emacs/Recentering
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark

use gnu emacs the plain text computing environment 223

Changing Directions

If you know the string you’re looking for precedes Point, you can
instead start your search with C-r (isearch-backward). You can
reverse direction at any time with C-r, and change back to going
forwards again with a C-s, as needed. The commands M-s M-< and
M-s M->, which jump to the first match or last match respectively,
without terminating your search, can be useful for fine-tuning your
position before or after changing directions.

Restarting Your Last Search

Immediately after starting a search with C-s, if you type another C-s,
it will search for the last search string you used (the same is true
if you start with C-r—an immediate C-r reinvokes your previous
search). Think of the sequence C-s C-s as “redo my last search”
(same for C-r C-r).

Isearch maintains a history of your last 16 search strings in the
usual ring structure. Just use M-p and M-n as usual to navigate through
your searches; when you’ve pulled up the one you want, you can edit
it before starting the search with another C-s or C-r. There are sep-
arate histories for simple string search and for regular expression
search.

Searching for Funny Characters

If you need to search for a non-printing character (which would
normally terminate your search), you can do so by quoting it with
C-q.189 So you can search for a C-g (ASCII 007) with C-s C-q C-g. 189 Which is just what you normally do

to insert a non-printing character in any
Buffer; see Quoted Insert.

To include an explicit newline in your search string, just use a simple
C-j (the ASCII linefeed or newline character), which you don’t have
to quote.

Case Sensitivity and Whitespace

Searches are case-insensitive190 by default, so “and” will also find 190 Emacs calls this case-folding.

“And” and “AND”, etc. But if you include an uppercase letter
anywhere in your search string, then the search is performed case-
sensitively.

Whitespace is treated abstractly: by default, a single space will
match a sequence of any whitespace characters (space, tab, formfeed,
and newline in most Major Modes). This is called lax space matching.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch

224 keith waclena

Varieties of Isearch

The cases just described are just defaults; you can toggle any of them
on or off in mid-search with the following special isearch-mode
commands, any of which only affects the current search and doesn’t
“stick” for future searches (but you can set your preference of default
for each in your Init File; see “Special Isearch” in the Emacs manual).

M-s c Case Folding Toggle case folding on and off; this command is
also on M-c. On by default.

M-s SPC Lax Space Matching Toggle lax space matching on and off;
when off, one space character matches only a single space and not
a run of spaces or a combination of other whitespace characters.
On by default.

M-s ’ Diacritic Folding Toggle diacritic folding191 on and off. (Mnemonic: 191 Emacs calls this character folding.

the apostrophe ’ is like an acute accent.) When on, an unadorned
letter will match that same letter with any diacritical mark. So,
searching for “cafe” will also find “café”. Off by default. I recom-
mend turning this on by default with this Init File snippet:

Init File
(setq search-default-mode 'char-fold-to-regexp) ; cafe = café

M-s w Word Search Toggle word search on and off. When on, the
search string will only match complete words (so “an” will match
neither “any” nor “man” nor “pants”). Your search string can be
a sequence of space-separated words and those complete words
will match with any amount or combination of whitespace and
punctuation between them. Off by default.

M-s w also has a global binding to isearch-forward-word, which
initiates an incremental word search.

M-s _ Symbol Search Toggle Symbol Search on and off. Symbol search
is exactly like word search, except it deals with symbols rather than
words, according to the current Major Mode. In programming
language modes especially, Emacs symbols represent variable and
function names, which can contain punctuation characters which
aren’t typically allowed in Emacs words. An example is that most
languages allow _ in symbols, but _ is usually not considered part
of a word.192 (Hence the M-s _ mnemonic.) Off by default. 192 “Typically” and “usually” because of

course Emacs allows you to declare that
_ is part of a word in any given buffer
or Major Mode.

M-s i Search Invisible Text

Emacs has the ability to make text invisible; M-s i toggles whether
or not an incremental search will match text that’s currently in-
visible. For example, Outline Mode and Org Mode let you hide

https://www.gnu.org/software/emacs/manual/html_node/emacs/Special-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Word-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Word-Search

use gnu emacs the plain text computing environment 225

(“fold”) the text within nested subheadings, so you can focus on
the outer text; Selective Display hides indented text (say in pro-
gramming language modes) for the same reason. Off by default.

M-s r Regular Expression Search

I’ve saved the best (perhaps) for last. M-s r (also on M-r) toggles
between simple string search, which we’ve been discussing, and
regexp search, which uses the powerful pattern matching language
of regular expressions. This is so important and so heavily used
that you can start out in a regexp search via the global bindings
C-M-s (isearch-forward-regexp) and C-M-r (isearch-backward-
regexp). Off by default.

Other than searching for complex patterns rather than simple
strings, incremental regexp search is almost identical to Isearch,
supporting all the features described in this section. The main
exceptions are that lax spacing is not on by default (you can toggle
it on with M-s SPC) and that diacritic folding is not available.

Why does Emacs have both simple string search and regular ex-
pression search? In editors that only have regexp search, you have
to do a lot of quoting of the regexp metacharacters (like a simple
. or $); on the other hand, if you only have string search you can’t
do powerful searching. So we have to have both, equally easy to
use.

Nonincremental Search

Emacs’s incremental search is now the standard way to search; al-
most all editors and many other applications (e.g. web browsers,
shells) have adopted the idea193. But I suppose you may occasionally 193 Though not always with highlighting

as sophisticated as Emacs’s.want to do a non-incremental search, and you can do that with C-s

RET or C-r RET — in other words, begin your search by hitting return
and the prompt will change from I-search to Search, and now you
have to type your complete search string without seeing any inter-
mediate matches. When you’ve typed it in, hit RET to do the search
and you’ll be taken to the first match. Period. Your search is over. To
find the next hit, you have to do C-s RET RET, which will reuse the
previous search string.

So disappointing. This is the way all searches used to work before
the invention of incremental search.

Why would you want to do this? I guess you can think of it as
equivalent to C-s followed by an immediate M-e to edit the search
string. Perhaps nonincremental search is for people who haven’t yet
learned how to yank.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Search

226 keith waclena

Yanking Into the Search

Key Action
C-w Yank next word from buffer
C-M-w Yank next symbol from buffer
M-s C-e Yank remainder of line from buffer
C-M-z Yank string up to given character
C-M-y Yank character at Point

Table 21: Isearch Yank Commands

Frequently you want to search for some text that is right in front of
you in the current Buffer, and the properly lazy Emacser never wants
to type in text unnecessarily. Instead, you can yank text at Point right
into your Isearch. You can do this right after starting a search, or
after you’ve typed part of your search string. You can also yank in
text from the Kill Ring in the usual manner with C-y and M-y. See
Table 21.

Transitioning to Other Search Types

Key Action
M-r Switch to regexp search
M-s o Switch to occur

M-% Switch to query-replace

M-s h r Terminate search, leave highlights

You’ll find that Isearch is your goto-search—the one you automati-
cally reach for—but isearch-mode provides shortcuts to transition to
other searches, so that you don’t have to abort your Isearch and start
over.

You can switch from simple string search to regular expression
search with M-r— perhaps your simple search isn’t finding enough
matches; you may need to use M-e to convert your search string to a
more complex regexp.

I use the M-s o transition a lot: without terminating your Isearch,
it pops up a Buffer of hits, search-engine style, as if you had done M-x

occur.
You might decide in the middle of your search that you want to

convert all the matches to something else; M-% will switch to a query-

replace, using your search string as the text to replace. If you’re
doing a regexp search when you hit M-%, it will switch to query-

replace-regexp instead.
Finally, while it’s not really a transition to a different kind of

search, M-s h r will terminate your search, leaving all the hits in
the Buffer highlighted in a color of your choice; see Highlighting.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace

use gnu emacs the plain text computing environment 227

Help

With isearch-mode having 80-odd key bindings, you might have
trouble remembering them all, so just try to remember C-h C-h,
which will pop up a special Isearch help Buffer. For another perspec-
tives on all this, see “Incremental Search” in the Emacs manual.

Occurrences

Incremental Search gives you an overview of the matches for your
search string (via colorization), but if your Buffer is large and your
matches are spread out, you won’t be able to see very many of them
without stepping through them all

M-x occur (also on the global binding M-s o) gives you a more
compact overview of the matches in a separate Buffer named *Occur*.
It might look like this (partial view of the *Occur* Buffer):

29 matches for "^#\+name:" in buffer: use-emacs.org

125:#+NAME: info-nodes

209:#+name: age-in-years

4277:#+name: image-mode-scaling-commands

4290:#+name: image-mode-scroll-keys

4404:#+name: basic-dired

6218:#+NAME: shell-commands

6695:#+NAME: face-count

This is rather like a results page from a web search engine. It tells
you how many total matches there were, and each hit shows the
complete line it occurred on, preceded by its line number; you remain
in the Buffer from which you issued the occur command.

This gives you a nice overview, and you can jump directly from
match to match with C-x ‘ (next-error) or its more mnemonic
binding, M-g M-n (Go to Next hit).194 Each M-g M-n moves Point 194 This is also bound to the less felici-

tous M-g n.to the next matching line in the original Buffer—the Point in the

Occur Buffer follows along—so you can step through all the hits.
(Why “next-error”? These search hits don’t seem like errors! The

reason is that this is just one of many use cases for a command that
originated to step through the error messages from a compiler for a
programming language; see Compiling Code.)

Instead of staying in the original Buffer and stepping though all
the hits, you can switch to the *Occur* Buffer and navigate to the
lines of interest, where you can hit RET to jump to that line in the
original Buffer or C-o to stay in the *Occur* Buffer but scroll the
original Buffer to show that line in context.

Of course you might use an Isearch to navigate in the *Occur*
Buffer, and in a big *Occur* Buffer, I actually sometimes use. . . M-x

https://www.gnu.org/software/emacs/manual/html_node/emacs/Incremental-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode

228 keith waclena

occur! Yes, an occur within an *Occur* Buffer is a way to narrow the
occurrences to a more precise list. This all just works because, well,
buffers are buffers and text is text, even though *Occur* is the user
interface of the M-x occur application!

Writable Occur, or occur-edit-mode

One of the more amazing features of occur is occur-edit-mode,
bound to e in the *Occur* Buffer. This one of Emacs’s Indirect Edit-
ing features. Normally, the *Occur* Buffer is read-only, but typing e

allows you to edit the Buffer. The amazing part is that when you’re
done editing, give the command C-c C-c195 (occur-cease-edit) and 195 The usual Emacs “finish up” or “I’m

done” key binding.all your edits are applied to the matching lines in the original Buffer!
You can use any techniques to make these changes: not just manual
slogging, but things like M-% (query-replace) or a Keyboard Macro.

Multi-Buffer Searching

With a long-running Emacs server, I typically have fifty or more
buffers going at any given time — files, shells, emails, web pages,
directories, etc. How on earth do you find anything?

The best way to search all of your Emacs is to say C-u M-x multi-

occur-in-matching-buffers. You’ll be prompted for a regular ex-
pression to target the buffers you want to search; just enter “.”:

List lines in buffers whose names match regexp: .

Then you’ll be prompted for your search string (actually another
regexp); we should get lots of hits for “the”:

Collect strings matching regexp: the

Normally this command only searches buffers that are visiting files,
and the first regexp is matched against the buffer’s visited filename,
but with the prefix argument (C-u), it searches all buffers, so that
will include Dired buffers, music player buffers, Help and Apropos
buffers, shell and terminal buffers: everything.

I just did such a search for the word “the”: in about one second,
a new *Occur* Buffer popped up showing “3518 matches in 2609

lines total across 108 buffers”. The Buffer looks mostly like a normal

Occur, but the matches are grouped by Buffer; here’s an incom-
plete, edited example (all the occurrences of “the” will be colorized):

https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search

use gnu emacs the plain text computing environment 229

3518 matches in 2609 lines total for "the":

24 matches in 17 lines in buffer: sittin-on-the-dock-of-the-bay

1:{title:Sittin’ On the Dock of the Bay}

6:[G]Sittin’ in the mornin’ [B]sun

7:I’ll be [C]sittin’ when the ev - [B]en - [Bb]in’ [A]comes

6 matches in buffer: captain-beefheart

4:* The GREAT essential records

7:- Doc at the Radar Station (1980)

10:* The Good

13:- The Spotlight Kid (1972)

241 matches in 185 lines in buffer: texmf.cnf

9:% (Below, we use YYYY in place of the specific year.)

All the usual Occur commands work in this Buffer, including e

(occur-edit-mode).
Instead of multi-occur-in-matching-buffers, you can instead use

plain old M-x multi-occur, which prompts you, one at a time, for the
set of Buffers to search; you can use completion on the Buffer names.

You can also do a multi-incremental-search. Personally, I think this
is more awkward than Multi-Occur, but your mileage may vary. It’s
just like a regular Isearch except, when you hit the end of a Buffer, a
C-s, instead of wrapping around to the beginning of that Buffer, ad-
vances to the next Buffer that contains a match. M-s M-< and M-s M->

are especially useful here to skip over entire buffers and keep search-
ing.

There are several entry points. In Table 22, “listed” means you’ll
be prompted to list the targets (buffers or files), and “regexp” means
you’ll enter a regular expression to match the targets.

Targets String Search Regexp Search
Buffers, listed M-x multi-isearch-buffers M-x multi-isearch-buffers-regexp

Buffers, regexp C-u M-x multi-isearch-buffers C-u M-x multi-isearch-buffers-regexp

Files, listed M-x multi-isearch-files M-x multi-isearch-files-regexp

Files, regexp C-u M-x multi-isearch-files C-u M-x multi-isearch-files-regexp

Table 22: Multi-Isearch Entry Points

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search

. . . and Replacing

One of the main reasons to search is in order to move to a new loca-
tion. The other is to replace text.

The most important find-and-replace command is M-% (query-
replace). It prompts for a string to replace (we’ll use “vim”):

Query replace (default foo → bar): vim

and then the replacement text (we’ll use the obvious):

Query replace vim with: emacs

Emacs then finds the first match for “vim” after Point, highlighting
it (and all the upcoming matches) in the manner of Isearch, and then
asks what to do with this match:

Query replacing vim with emacs: (? for help)

Basically you type y to do this replacement or n not to do so, and
Emacs then jumps to the next match, and we repeat the process until
we finish with the final match in the Buffer.

To do the entire Buffer, first jump to the beginning with M-<

(beginning-of-buffer). With a negative prefix argument196, the 196 E.g, C-u - M-%.

replacements can be done backwards from Point.
With a simple prefix arg—just C-u—the search string is matched as

a whole-word as if for M-s w (isearch-forward-word).
There are many more valid answers to the replacement question

than just yes and no; see Table 23.197 Most important is ! which 197 The non-mnemonic SPC, DEL, and RET

keybindings are what we old-timers are
used to.

replaces all the remaining matches in one go, no questions asked. It’s
typical that you intend to do all the replacements, but want to see the
first few in context before committing yourself with !. Sometimes
you don’t have time to see the effect of the replacement because
Emacs has jumped to the next match and scrolled the replacement
off-screen; in this case, just hit ^ to jump back to where you were and
take a look (more ^’s will step back through more replacements).
When you’re happy, just hit SPC to continue replacing where you left
off.

If you’re not happy with the replacement you’ve just done (maybe
you hit y on autopilot when you meant n), you can undo it with u;

https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Word-Search

232 keith waclena

Key Action
SPC, y replace this match and proceed
DEL, n skip this match and proceed
! replace all remaining matches without asking
^ jump back to previous match
, replace this match but don’t proceed yet (stay here)
u undo previous replacement
U undo all replacements
e, E edit the replacement string
RET, q Quit without replacing this one
. replace this match, then quit
C-r enter Recursive Edit
C-w delete match and enter Recursive Edit

Table 23: Query Replace Actions

Point will jump back to that spot, undo the change, and you can
think again; any action is possible here. You can even undo all the
replacements you’ve done so far with U, after which you might want
to edit your replacement text with E and then start over, all without
quitting the query-replace.

Sometimes you do want to quit early; q or . will do the job198: 198 As for Isearch, any other Emacs
command will also end the query-

replace, without replacing, and be
immediately executed.

perhaps you only wanted to do your query-replace in the current
paragraph.

Actually, in that case you’d be wiser to set the active region around
the text you want to replace within; if the Region is active, query-
replace will only operate on matches within it, and so you can safely
use the convenient ! without affecting anything outside the Region.

Sometimes you’re stepping through replacements and find a spot
where you want to use a completely different replacement string—
but just this once. You could quit with q, manually do the replace-
ment, and then reinvoke M-% from that location to continue—Emacs
helpfully offers your previous search string and replacement as the
default. The disadvantage of this is that you can no longer use ^

to go back to locations from the preceding M-%, since it was termi-
nated; nor will U undo any of those changes. Not a big deal, but
there’s a fancier way: instead of quitting, use C-r to enter a Recursive
Edit, make your anomalous change, and use the usual C-M-c (exit-
recursive-edit) to exit the Recursive Edit and continue your query-
replace session. C-w is a handy shortcut.

Once you’ve done a few Query Replaces, you’ll notice that it’s
case-smart. Firstly, if your search string is entered in all lowercase
letters, it is matched in a case-insensitive mode (just as with Isearch).
In our “vim” → “emacs” example, if one of the vims in the Buffer is
capitalized (“Vim”) then you’ll see this prompt:

Query replacing vim with Emacs: (? for help)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Recursive-Edit
https://www.gnu.org/software/emacs/manual/html_node/emacs/Recursive-Edit

use gnu emacs the plain text computing environment 233

Note that instead of replacing with “emacs”, it’s going to use “Emacs”,
to match the case of the “Vim”. Likewise, if there’s a “VIM” the re-
placement will be “EMACS”.

If your search string contains any uppercase letters, the searches
will be done case-sensitively, and likewise your replacement text will
be used without modification. So M-% “Vim” → “emacs” will only
match “Vim” and will replace it with your all-lowercase “emacs”.
If your search string is all lowercase but your replacement string
contains any uppercase letters, the search is case-insensitive but the
replacement will be done exactly as given every time. In Table 24,
we summarize the three cases: the String column is the text in your
Buffer, and the Replacement column shows the result of respond-
ing with y; an empty Replacement means that the particular String
wasn’t considered a match.

Search Replace String Replacement
vim emacs vim emacs

Vim Emacs

VIM EMACS

Vim emacs vim

Vim emacs

VIM

vim Emacs vim Emacs

Vim Emacs

VIM Emacs

Table 24: Case-smart M-% examples

You’ll notice in the initial prompt that there’s a default search and
replacement pair which is your previous invocation (in the example
above, it’s to replace “foo” with “bar”). Just hit RET to accept it and
begin the process. Alternately, you can use the familiar M-p and M-n

to cycle through your history of Query Replace invocations. At any
point you can edit either the search string part or the replacement
part.

Some other Emacs commands—such as Dired’s Q command, M-x
xref-query-replace-in-results, or M-x tags-query-replace— will
invoke a Query Replace for you on multiple buffers. In these multi-
Buffer replacements, ! will do unconditional replacement just in the
current Buffer; use Y (note the caps) to replace all of the remaining
matches in all the remaining buffers, or N to skip to the next Buffer
without replacing the remaining matches in the current Buffer.

Query Replace with a Regular Expression

If Query Replace isn’t powerful enough for you, you can try C-M-%

(query-replace-regexp), where instead of a simple search string, you

https://www.gnu.org/software/emacs/manual/html_node/emacs/Identifier-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Identifier-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace

234 keith waclena

use a Regular Expression. It works much like M-%, but your regexp
search pattern can match much more flexibly. For example, we might
want to go beyond just replacing “vim” with “emacs” via this regexp:

\<\(\(neo\)?vim\|vi\|ed\|\(vs\)?code\|sublime\(*text\)?\|atom\)\>

which allows us to replace a whole collection of apostate editors with
Emacs.

In addition to supporting a fancier search string, query-replace-
regexp also supports special features in the replacement string. In
order to start using these very handy features, as long as you stick
to letters, digits, and whitespace—all of which, as regexps, work as
you’d expect—you can start using query-replace-regexp without
waiting to become an expert in Regular Expressions. But if you want
to use any other characters in your regexp, even just the humble
period (.), you’ll have to learn how to escape them first.

If you include \# in the replacement text, that pair of characters
is replaced by the number of replacements that have already been
performed, so if our Buffer contains:

foo foo foo foo foo foo

and we execute C-M-% foo RET foo\# at the beginning of the Buffer,
the resulting Buffer is:199 199 It may seem odd to you that the

numbering doesn’t start at one, but
programmers tend to start counting
from zero.

foo0 foo1 foo2 foo3 foo4 foo5

The sequence \? in the replacement text will result in a prompt
for a string, so that you can replace each \? with whatever you like.
Consider this command: C-M-x foo RET foo\?. First you’ll need
to decide whether or not to perform this replacement, as usual, by
responding y or n; if you choose to do the replacement, you’ll now
get an additional prompt:

Edit replacement string: foo

Now you can edit the replacement to be foobar, barfoo, antiparticle,
the empty string (to delete the match), or anything else. For the next
replacement, you’ll be prompted anew, and can respond with a com-
pletely different string (or use M-p’s to pull up replacements from the
history). You can use more than one \? if you like.

Almost the most powerful feature of query-replace-regexp,
though, is that you can refer to the text matched by the regexp, and
the text matched by any capturing parentheses within it, in the replace-
ment text via back references. In the replacement string, \& stands
for the entire match. Even if you aren’t using any of the pattern-
matching features of regexps, this can save you some typing. C-M-%
emacs RET the amazing \& RET replaces each “emacs” with “the

use gnu emacs the plain text computing environment 235

amazing emacs”; since “emacs” is all lowercase, this replacement is
case-smart.

When your regexp matches more than just a literal string, then a
back reference is the only way to include the match in the replace-
ment. Suppose you want to put quotes around all the numbers in
your Buffer. The regexp [0-9]+ matches any number, so you can do
this with C-M-% [0-9]+ RET "\&" RET.200 200 You could also do this task with a

Keyboard Macro, but a Query Replace
will be simpler, and will also always
run faster.

Capturing parentheses let you refer to just a part of the match.
Suppose you have a number of strings of the form “foo56”, “foo765”,
“foo3” and the like, and you need to change all the “foo”’s to “bar”’s,
yielding “bar56”, “bar765”, and “bar3”, but not change any stan-
dalone “foo”’s that don’t have an attached number. You can do it this
way: C-M-% foo\([0-9]+\) RET bar\1 RET. The \1 refers to the first
parenthesized subexpression; if you have two sets of parens, you can
use \2 as well. This means you can change all numbers like “10K”,
“542M”, and “2.3G” to “10 K”, “542 M”, and “2.3 G” with C-M-%

\([0-9.]+\)\([KMGTPEZY]\) RET \1 \2 RET.
You could also change all the foo[0-9]+ matches to just plain

“foo” with the command C-M-% foo[0-9]+ RET foo RET or in fact
delete all trailing numbers from any words with C-M-% \([a-z]+\)[0-9]+

RET \1 RET.
Because of back references and the other handy backslash-sequences,

if you actually want to include a backslash in your replacement,
you’ll need to double it. That is, \\ is replaced with a single \.

Regexp Replacement Example Match Result
emacs the amazing \& Emacs The Amazing Emacs
[0-9]+ "\&" 3645 “3645”
foo\([0-9]+\) bar\1 foo765 bar765

\([0-9.]+\)\([KMGTPEZY]\) \1 \2 10K 10 K
foo[0-9]+ foo foo765 foo
\([a-z]+\)[0-9]+ \1 xyz123 xyz

Table 25: query-replace-regexp Exam-
ples

Elisp Replacement Strings

Above, I said back references were almost the most powerful query-
replace-regexp feature. Undoubtedly the most powerful feature
is the ability to apply an arbitrary Elisp expression to the matched
string and use the result as the replacement: that is, to compute a
replacement from each match. \, (backslash-comma) followed by an
Elisp expression can be used anywhere in the replacement, including
more than once. Within the expression, you can use all the backslash
sequences we’ve discussed above.

To use the feature you need to be pretty well-informed about both
Regular Expressions and Emacs Lisp, so I won’t go into this any
further after giving a trivial example. Note that the Elisp expression:

(1+ x)

236 keith waclena

where x is some number, returns the successor of that number, so
(1+ 6) evaluates to 7. Remember that \# can be used to number your
replacements, but that the numbering starts at zero. We can arrange
for the numbering to start at one with the replacement string:

foo\,(1+ \#)

so our example above would yield:

foo1 foo2 foo3 foo4 foo5 foo6

See Regular Expressions and Programming the Lisp Machine for more
information.

Other Entry Points

There are two other string replacement commands that you can
use: M-x replace-string and M-x replace-regexp. They are non-
interactive versions of M-% and C-M-% respectively. They work exactly
the same, including their interpretation of prefix arguments and of
replacement strings, they just run in “batch mode”: they do all the
replacements without any questions. I literally never use these com-
mands, because the interactive versions are just as fast as soon as you
decide it’s okay to hit !, and I always like to see the first one or two
replacements before I commit. That said, a single Undo will undo all
the changes in one go (also true of the interactive versions).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Unconditional-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexp-Replace

Meet the Greps

Figure 35: M-x grep

Emacs also has its own interfaces to grep(1) for searching across
files outside of Emacs, whether (1) a set of specific files, (2) some or
all of the files in some directory, or (3) some or all of the files under
some directory, recursively. These searches pop up a *grep* Buffer
of clickable hits (each of which pulls up the file and takes you to that
location).

Before we explain how to invoke the Greps, let’s take a look at the
workings of the *grep* Buffer; it works the same regardless of how it
was invoked.

The *grep* Buffer and Grep Mode

You can see from the screenshot above that a *grep* Buffer looks just
like an *Occur* Buffer—lines of hits prefixed with line numbers—
except that the *grep* Buffer also includes file names; the format
looks exactly like the output of grep(1). Table 26 summarizes the
buffer’s key bindings. It shouldn’t be surprising that the Buffer’s
Grep Mode has many key bindings and actions in common with Oc-
cur Mode; for historical reasons, there are some discrepancies in the
key bindings, and Grep Mode also has some actions that don’t make

238 keith waclena

sense in Occur Mode. See Compilation Mode and its Many Descendants
for a side-by-side comparison.

Grep Mode is enabled in the hits Buffer (*grep*) and some of its
actions affect one or more target buffers that it pops up for you.

Key Action
1 RET, C-c C-c jump to hit in target file

C-o display hit . . .
n jump to Next hit in target file
p . . . Previous . . .

2 M-n, TAB move point to Next hit in *grep*
M-p, <backtab> . . . Previous hit . . .
}, M-} move point to next file in *grep*
{, M-{ . . . previous . . .
C-c C-f toggle next-error-follow-minor-mode Mode

3 SPC, S-SPC scroll target buffer up
DEL scroll target buffer down
< scroll target buffer to top
> scroll target buffer to bottom

4 g revert buffer
C-c C-k Kill running grep

C-c C-p writable grep

5 0 ... 9 digit argument
q Quit hits buffer
h, ? help for mode

Table 26: grep-mode Bindings

The Grep Mode commands come in several groups:

1. Commands that visit the file containing the hit at Point in a pop-
up Window, scroll the Window to the hit, and make this the se-
lected Buffer so you’re ready to edit. There’s also a display com-
mand, C-o, to do all that but stay in the *grep* Buffer.

2. Commands that just move from hit to hit in the *grep* Buffer; you
could of course use plain old C-n (next-line) and C-p (previous-
line), but depending on your search, a hit might comprise more
than one line. There are also handy commands to move from file
to file, and a command to toggle next-error-follow-minor-mode.

3. Commands that scroll the target Buffer from within the *grep*
Buffer; very handy when you’ve used C-o.

4. Commands to revert the *grep* Buffer (to re-run the grep com-
mand and update the Buffer); kill the running grep command201; 201 If the scope of your grep is large, it

might take minutes to finish.or do an Indirect Edit.

5. The usual Special Mode conveniences: easy digit arguments, Mode
help, and a quit command.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 239

next-error Integration

You can navigate from hit to hit from wherever you started your
Grep without switching to the *grep* Buffer via C-x ‘ (next-error)
202 or equivalently M-g M-n (it also works inside the *grep* Buffer). 202 That’s a backtick, not an apostrophe.

This works even when the *grep* Buffer is no longer visible.

Indirect Editing with Writable Grep

One of the Grep facility’s most amazing features is that you can edit
the text of the hits in the *grep* Buffer and then, with a keystroke,
write your edits back to the original files. This “indirect editing”
feature works the same way as Writable Occur; unfortunately the
keystroke to invoke it—C-c C-p— from a *grep* Buffer isn’t the
same as for an *Occur* Buffer.203 203 Though you can always change that!

This requires the optional wgrep Package from the GNU reposi-
tory. I recommend this snippet for your Init File:

Init File
(unless (package-installed-p 'wgrep)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'wgrep)))

Plain Old M-x grep

How do we acquire one of these wonderful *grep* Buffers? The
fundamental way is with M-x grep, which will prompt you for a
grep command line; so, this obviously assumes you’re familiar with
the Unix grep(1) command, and familiar with Regular Expressions
(Regexps) as well. The default command line (on Linux) is:

grep --color -nH --null -e

You’re expected to fill in your Regexp and the paths of the files you
want to search on the right. Don’t forget to quote both appropriately,
just as in the shell. For example, you might edit the command like
this:

grep --color -nH --null -e '^def ' *.py

in order to see the functions defined in all the .py files in the default
directory.

You’re free to change the options (perhaps adding a -i to do a
case-insensitive search), but see below for details. You can also use
something fancier than a single grep command, like a pipeline of

https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://en.wikipedia.org/wiki/Grep

240 keith waclena

grep’s, or anything else that meets the output requirements of the

grep Buffer.
If you’re unfamiliar with Regexps, you can change grep to fgrep

and do a plain text search, but you still need to be familiar with Unix
shell quoting; if you aren’t, skip ahead to lgrep.

With a prefix argument, C-u M-x grep will fill in the complete
grep command to search for the Symbol at Point in files matching
the selected Buffer’s file extension, so this is a good way for those
unfamiliar with grep(1) to get started. And of course Emacs keeps a
history of the grep commands you’ve used in this session, which you
can access in the usual ways.

Local Directory Grep with M-x lgrep

M-x lgrep is a convenient front-end that composes a Grep command
for you that searches all the files in a given directory; it’s especially
convenient for Emacs users who aren’t yet au courant with Unix con-
cepts like Regexps, shell quoting, and file globbing. When invoked,
it prompts you for three things: a Regexp, a filename or glob pattern,
and finally a directory, and it constructs and immediately runs a grep

command for you. Let’s use M-x lgrep to search for “foo” in all the
files in our default directory. The Minibuffer prompts look like this:

Search for: foo

Now specify the files to search in:

Search for "foo" in files matching wildcard (default all):

Just hit RET for all (significant) files, but it’s also totally fine to enter
one or more filenames separated by spaces (your Completion system
can help you), or use one or more space-separated glob patterns
(wildcards).

Finally we have to say which directory contains the files:

In directory:

Hit RET to search the selected Buffer’s default directory.
This will be a case-insensitive search by default. Don’t try to quote

any of these values; lgrep will quote them for you.
With a prefix argument, C-u M-x lgrep, you’ll be able to edit the

composed grep command before Emacs runs it; so you could change
grep to fgrep here if you don’t want to use a Regexp, for example. If
you do this, you’ll see that the composed command is very complex,
because Emacs adds a boatload of options to ignore the types of files
you don’t usually want to include in a search (such as Emacs backup
and auto-save files).

lgrep shares histories for each of the three prompts with rgrep.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching

use gnu emacs the plain text computing environment 241

Recursive Grep with M-x rgrep

lgrep does a flat search of files in one directory, but you can search
an entire directory hierarchy recursively with M-x rgrep. It has
the same three prompts as lgrep and the only difference is it also
searches the starting directory’s subdirectories, and so on, recursively.
You can for example search your entire home directory by entering ~

as the starting directory.
M-x rzgrep is a variation that will search gzipped files204. You can 204 That is, files compressed by the

gzip(1) program.specify them at the “files matching wildcard” prompt with the glob
pattern *.gz, or be more specific with something like *.org.gz, or
search both compressed and uncompressed files with multiple space-
separated glob patterns (e.g., *.org *.org.gz). This command re-
quires that you have zgrep(1) installed on your system. Since rzgrep

is a confusing name, you can also invoke it by the alias zrgrep.
As for lgrep, with a prefix argument, you’ll be able to edit the

composed grep command before Emacs runs it.

Just the Skeleton with M-x grep-find

rgrep composes a complex shell command that uses find(1) (the
Unix directory hierarchy tool) to run the appropriate grep command
for you. Like lgrep, the composed command ignores many files such
as backup files. Occasionally you might not want this assistance; C-u
M-x rgrep will let you edit the command, but it can be annoying to
have to delete most of the over 1,500 characters to customize it. M-x
grep-find gives the bare-bones, 57-character version of an rgrep

command that you can edit to do precisely what you want. Needless
to say, you’ll need to be familiar with the very hairy (but essential)
find(1) command for this.

Grep Files Aliases

When entering file names or glob patterns at the “files matching
wildcard” prompt for any of lgrep, rgrep, or rzgrep, you can type
any of a set of handy aliases that stand for more or less complex glob
patterns. You can customize the variable grep-files-aliases to add
your own shortcuts.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching

242 keith waclena

Alias Generated Glob Patterns

all * .*
asm *.[sS]

c *.c

cc *.cc *.cxx *.cpp *.C *.CC *.c++

cchh *.cc *.[ch]xx *.[ch]pp *.[CHh] *.CC *.HH *.[ch]++

ch *.[ch]

el *.el

h *.h

hh *.hxx *.hpp *.[Hh] *.HH *.h++

l [Cc]hange[Ll]og*
m [Mm]akefile*
tex *.tex

texi *.texi

Grepping from Dired

You can enlist Dired’s help when you need to grep a very specific set
of files that can’t be specified by a compact glob pattern. Just mark
the files via Dired’s powerful marking commands, and then invoke A

(dired-do-find-regexp).205 205 Note that Dired’s A command doesn’t
actually use the Grep facility, but rather
the related Xref facility.

Which grep Is It, Really?

Any compatible program can be used with any of the Grep-family
commands instead of plain old grep: in particular, you can use egrep

or fgrep instead. What exactly makes a compatible command?
For M-x grep, where you specify the command invocation your-

self, any command is compatible if it produces the standard grep
output format, i.e. lines that look like:

FILENAME:LN:text

where FILENAME is the path to the file containing text, and LN is
the number of the matching line. grep(1), egrep(1), and fgrep(1)

are all capable of producing this output format.206 Version control 206 You won’t get line numbers without
the -n option, and note that by default,
no FILENAME is output unless more than
one file is named on the command line;
you can toss in /dev/null to achieve
this state; the GNU implementations
support a -H option that assures the
presence of the FILENAME.

systems all support a grep subcommand and have options to produce
a compatible format, like git grep or hg grep; these commands can
be invoked via M-x grep, though there are also more specific ways to
use them via third-party packages like Magit and Projectile.

Some popular grep replacements like ag(1), ripgrep(1), ack(1),
and the like, can be used as drop-in replacements, but they may be
better used via third-party packages specifically designed for them.

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Mercurial

use gnu emacs the plain text computing environment 243

The lgrep and rgrep commands also require this output format,
but they additionally make assumptions about the availability of
certain command line options, which is much more complex; to cus-
tomize which grep program is used by these commands, Customize
the variable grep-template.

Regular Expressions

Some people, when confronted with a problem, think “I know, I’ll use
regular expressions.” Now they have two problems. — Jamie Zawinski
(comp.lang.emacs)

Regular Expressions (Regexps) have already come up several times in
this book. Much as I’ve tried to avoid mentioning them up to this
point, the fact is that they’re used everywhere in Emacs: in Incremen-
tal Search, Query Replace, Grep, Dired, Apropos, and more.

If you’re a programmer, an apostate from any other programmer’s
editor, or just a Unix user familiar with the standard command line
tools, you’ll already be familiar with the concept, and can skip ahead
to see how Emacs Regexps differ from what you may be used to. If
you’re keen to learn and add Regexps to your tool kit (it’ll be worth
it, never mind Zawinski’s cheeky remark), check out the References
at the end of the chapter. But here I’ll try to give an explanation of
what they even are, and the minimum you need to know to make use
of some Emacs Regexp-based commands.

Powerful Pattern Matching

The job of Regexps in Emacs is to enable more powerful searching
and matching. Regexps are a mini-language for expressing patterns
that describe, or match, sets of strings207. When you search for the 207 A string is what programmers call a

sequence of characters; foo is a string, a
sequence of characters is a longer string.

word “Emacs” with the non-Regexp C-s (isearch-forward), you’re
actually using a pattern that happens to only match exactly one
string: “Emacs”. But you’ll recall that, due to Case Folding, if you
search for “emacs”, you’re using a pattern that matches a larger set of
strings, including not just “Emacs” but also “emacs”, “EMACS”,
“eMacS”, etc. Thanks to Lax Space Matching, if you search for
“GNU Emacs”, it will also match strings like “GNU Emacs” or
“GNU”, a newline, and “Emacs” at the beginning of the next line.
But that’s about it for the pattern language of Isearch.

You’re probably familiar with the common notation, or syntax,
where a *-character or ? is a wildcard, as in Unix shell file globbing
patterns: you might write *ing to match files ending in “ing” or

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://en.wikipedia.org/wiki/Glob_(programming)

246 keith waclena

c?t to match files named “cat” or “cot”. This means that you can’t
readily try to match strings that include asterisks or question marks,
because of their interpretation as wildcards: they are not plain old
characters, but what we call metacharacters, because they’re function-
ing on a level above the literal.

Regexps are a much more powerful pattern language than that.
They were formalized in 1951 by the mathematician Stephen Kleene
and were probably first implemented in a text editor by Ken Thomp-
son in QED sometime between 1967 and 1970

208. From there they 208 As far as I know, Thompson invented
the common basis of the modern syntax
of Regular Expressions.

appeared in the original Unix editor ed(1) circa 1973; then, because
of their general utility, in other tools like grep(1); and then spread
rapidly into every editor that’s worthy of the name; they were in
GNU Emacs from the beginning.

Regexps let you write compact, expressive, patterns that specify
matches in terms of:

• beginnings and endings of lines and of strings

• beginnings and endings of words

• sets of characters (e.g. alphanumerics, vowels, whitespace)

• repetitions of Regexps (e.g. zero or more, between 3 and 12)

• grouping of sub-matches with the ability to refer back to them

In order to express these things, our notation needs to have eight
metacharacters; here are the first seven (the Regexp * and ? metachar-
acters do not have the same meaning they have as glob metacharac-
ters):

. * + ? [^ $

In your Regexp you may well need to match one of these metachar-
acters literally: you can do this by quoting or escaping the metachar-
acter with the eighth metacharacter: the backslash, \. So * is the
Regexp that matches an asterisk, and a backslash can be used to
quote itself by doubling it. But don’t use backslash to quote plain,
non-metacharacters, like 1, b, or w, for example, where it may have a
special interpretation; see Backslash Constructs below.

Knowing this, you can make use of Emacs commands that ask you
to enter a Regexp, many of which are useful with plain non-meta,
characters: just add a backslash to any of the eight metacharacters
that you want to search for literally. Keep in mind that all characters
except the eight metacharacters stand for themselves in a Regexp,
so Emacs is indeed the Regexp that matches “Emacs” and *grep*
matches “*grep*”.

Here’s how to translate file globbing patterns into equivalent Reg-
exps:

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Ken_Thompson
https://www.bell-labs.com/usr/dmr/www/qed.html
https://en.wikipedia.org/wiki/Ed_(text_editor)
https://en.wikipedia.org/wiki/Grep

use gnu emacs the plain text computing environment 247

Glob Regexp Interpretation

* .* zero or more of any characters
? . any single character
[a-z] [a-z] any one of the characters from a to z

{a,b,c} \(a\|b\|c\) either a or b or c

Note that .—we sometimes call that “dot”—“matches any character”
just like ? in file globbing, including punctuation and whitespace209, 209 Except for newline: dot doesn’t

match newline.for example. Other handy Regexps for matching text include \b,
which matches a word boundary i.e. the beginning or the end of a
word, and \w, which matches only word constituents (typically al-
phanumerics, though it depends on the Major Mode). So the Regexp
to match words that start with an “e” and end with an “s” would be
\be\w*s\b, which will match “Emacs”, “editors”, “examples”, “es”,
and many others. That regexp translates to: match the strings which

1. at a word boundary (\b)

2. have an e

3. followed by zero or more word constituents (\w*)

4. followed by an s

5. at another word boundary (\b).

Unique Aspects of Emacs Regexps

If you’re familiar with Regexps from non-Emacs contexts, you prob-
ably already know that there are several distinct Regexp syntaxes
out there. Every application and programming language seems to
have its own flavor with subtle differences from the others: there are
the basic Regexps of grep(1), the extended Regexps of egrep(1), the
heavily enhanced Regexps of perl(1) and the PCRE library, and so
on.

You’ve probably guessed that I’m going to tell you that Emacs’s
Regexps are of yet another flavor. In the fundamentals, Emacs Reg-
exps are more like grep(1) Regexps, in that (, |,), {, and } and are
ordinary characters and the backslashified versions are metacharac-
ters. So in Emacs you do grouping (which captures) with \(and \),
alternation with \|, and counted repetition with \{ and \},

Emacs supports the non-greedy repetition operators *?, +?, and ??,
and the POSIX character classes (such as [[:blank:]]).

Emacs’s . matches any character excepting a newline. To search for
a newline, insert one literally with C-j (its ASCII value). You can also
use the POSIX space character class ([[:space:]]) or the whitespace
syntax class (\s-), when appropriate.

248 keith waclena

Backslash Constructs

Our Regexp notation, like most others, also includes a lot of backslash
constructs, including many that are unique to Emacs, supporting
purely Emacs concepts like the Buffer, Point, syntax classes, character
categories, and symbols.

We have non-capturing (“shy”) groups with \(?: ...\) and
explicitly-numbered groups with \(?NUM: ...\). \sCODE matches a
character whose syntax class is CODE. So, for example, \s- matches any
whitespace character, while \sw matches a word-character. \SCODE
(note the uppercase “S”) matches any character whose syntax class is
NOT CODE.

The point of \s and \S is that the characters that comprise a given
syntax class can differ from Major Mode to Major Mode210. So the 210 Really, from Buffer to Buffer.

word-class might include the apostrophe or it might not. Syntax
classes let you write Regexps that work in any Mode. Table 27 lists
the class codes.

CODE Syntax Class
- Whitespace characters
w Word constituents
_ Symbol constituents
. Punctuation characters
(Open parenthesis characters
) Close parenthesis characters
" String quotes
\ Escape-syntax characters
/ Character quotes
$ Paired delimiters
’ Expression prefixes
< Comment starters
> Comment enders
@ Inherit standard syntax
! Generic comment delimiters

Table 27: Regular Expression Syntax
Classes

Some other unique Regexp metacharacters include \‘ and \’

(that’s backtick and apostrophe) to match at the beginning and end
of the Buffer, respectively, and \= to match at Point. In addition to the
common \< and \> to match the beginning and end of words, we also
have _< and _> to do the same for symbols.

References

• See “Regexps” in the Emacs manual.

• Friedl, Jeffrey E. F. 2002. Mastering Regular Expressions. Sebastopol,

https://www.gnu.org/software/emacs/manual/html_node/elisp/Syntax-Descriptors
https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexps

use gnu emacs the plain text computing environment 249

CA: O’Reilly..

Unlimited Undo with Redo

The ability to undo editing changes is fundamental. GNU Emacs had
“unlimited” undo when it was released in 1985, a time when most
editors had at most the ability to undo the single most recent change.

Just Undo It

It’s very simple to just undo the last thing you did — whether insert-
ing, modifying, or killing some text. Just hit C-/ (undo), and your
change is undone. Point is always moved to the location where the
Undo occurred (which is why people use Undo to move around).
After undoing, just continue with your editing.

If you invoke undo several times in a row, you’ll see that it keeps
undoing back in time. You can undo all the way back to the first
change you made to the Buffer. If you visit a file, make changes,
and then decide you don’t like any of the editing you’ve done, you
can Undo them all away (though this could be tedious and you’d be
better off reverting the Buffer instead). You can Undo back through
file saves, and you can even Undo your Undo’s (see Redo, below).

To make undoing less tedious, Emacs groups long sequences of
uninterrupted insertion into undoable chunks. So if you type “unin-
terrupted”, and then hit C-/, the whole word is undone in one step,
rather than requiring 13 invocations of C-/, one for each letter. This
is called amalgamation and by default the chunk size is 20, so, if you
type “antidisestablishmentarianism” you’ll have to type two C-/’s to
undo it.

Emacs puts undo on two additional keystrokes: C-_ and C-x u,
and of course you could always say M-x undo. C-_ is the oldest of
these key bindings (and is the one that’s hardwired into my brain),
but C-/ is admittedly easier to type (C-x u is mnemonic, but highly
unfelicitous).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Undo

252 keith waclena

What, When, and Where Can You Undo?

If you delete a word (“foo”) in Buffer A, then delete a word (“bar”)
in Buffer B, and then, back in Buffer A, you hit C-/, the word “foo”
comes back, even though the deletion in Buffer B was more recent.
If you now change to Buffer B and Undo, “bar” comes back: each
Buffer’s undo history is independent.

Only changes to the contents of a Buffer are undoable. It doesn’t
matter what command caused a change: entering text by typing is
undoable but so is any other command that enters text: yanking from
the Kill Ring, inserting the result of running an external command
with C-u M-! (shell-command), inserting a file with C-x i (insert-
file): it’s all undoable.

Any command that kills Buffer text is undoable, as is any textual
object kill command like M-DEL (backward-kill-word). It makes no
difference if you killed text with a keystroke, a mouse action, or a
M-x (execute-extended-command) command.

All commands that modify text are undoable, like M-t (transpose-
words) or C-x C-u (upcase-region). A command like M-% (query-
replace) that makes mass changes is also undoable.

The scale of any of the above changes has no effect on their undoa-
bility. If you kill the entire Buffer contents with, say, C-x h (mark-
whole-buffer) followed by C-w (kill-region), or change the whole
Buffer to uppercase with C-x C-u211, or insert the contents of a 3- 211 We’ve all been there. . .

megabyte file, a single Undo will happily undo the change.
It also doesn’t matter how long ago you made a change; if you

made a change to a Buffer a week ago, and your Emacs has been
running all that time, you can still undo it. However, once you’ve
killed a Buffer, its undo history is gone, and exiting Emacs of course
kills all your Buffers.212 212 However, the third-party package

undohist will persist the undo history
of all your file-visiting Buffers across
sessions.How Unlimited is Unlimited?

Actually, there are limits, changeable, to the Undo facility. The de-
faults are so big that Undo is effectively unlimited.213 213 Myself, I have never hit these limits.

At least, I’ve never noticed it!How far back you can Undo is controlled by two User Options;
there’s also a hard limit on the maximum size of any single change
(see undo-outer-limit). You can Customize all of these. See “Undo”
in the Emacs manual for details.

Undo in the Region (Selective Undo)

The most amazing feature of Undo is that you can limit your Undo-
ing to a subset of the Buffer. Imagine that you’ve been editing for an

https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/M-x
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects
https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Kill-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Undo

use gnu emacs the plain text computing environment 253

hour, and then decide that you don’t like the changes you made to
one paragraph thirty minutes ago — but you do like all the rest of
your changes. It would be awful to have to Undo everything you’ve
done in the last twenty-nine minutes just to restore that one para-
graph.

No problem: all you need to do is set the Active Region around
that paragraph and start Undoing. None of the work you’ve done
outside of that paragraph will be Undone, and Undo will stop if you
go all the way back to the first change you made to that paragraph.

Redo, or Undo the Undos

It’s very easy to overshoot when you’re Undoing. You’re typing at
speed, make a mistake, and hit a few C-/’s to Undo it. But you hit
one too many! You can’t just immediately type C-/ again: that would
just Undo one step further. What to do?

You just have to stop Undoing. Not for a length of time, but just
by issuing any Emacs command that isn’t undo. You could invoke
C-f (forward-char), a nice harmless command, or M-x calendar, or
anything else, but C-g (keyboard-quit) is a perfectly fine way to stop
Undoing (and by now it’s probably wired into your lizard brain as
the “oops” command).

So after C-g just Undo again with C-/ and it does the same thing
as always: undoes the last change to the Buffer, which happens to
be your superfluous Undo. The distinction between Undo and Redo
may take a little getting used to, so play around with it. (If you can’t
get used to it, see undo-tree.)

What Can’t You Undo?

You can’t Undo anything that’s not a change to the contents of a
Buffer. So you can’t Undo changes to the layout of your Windows,
like a C-x 0 (delete-window) or a C-x 2 (split-window-below), or a
switch from one window to another. (But a recommended separate
facility allows you to undo those changes.)

You also can’t Undo killing a Buffer, which is another reason
Emacs is careful to ask for confirmation if you try to kill an unsaved
file-visiting Buffer.214 214 And why you shouldn’t take notes in

non-file-visiting Buffers; see Ubiquitous
Capture.

Don’t confuse the contents of the Buffer with how it’s presented:
if you highlight a word with M-s h . (highlight-symbol-at-point),
changing it’s color to yellow, that doesn’t change the actual text at
all, and so is not undoable with the Undo facility (of course, you can
“undo” the highlight manually).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Calendar/Diary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Split-Window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively

254 keith waclena

You can’t Undo the deletion of a file with M-x delete-file or
Dired’s D (dired-do-delete) command, or anything else like that.

Certain Buffers don’t have Undo turned on; any Buffer whose
name starts with a space (see Hidden Buffers) has Undo turned off.
You can turn Undo off in any Buffer if you like, but why would you?

special-mode Buffers (and Buffers in Modes that inherit from
special-mode), which are read-only by default and usually imple-
ment applications, may or may not implement Undo.

Finally, you can’t Undo non-Emacs actions that Emacs takes for
you, like sending an email, an instant message, or a tweet!

The undo-tree Alternative

A fair number of people think that the way Undo works is one of the
most confusing things about Emacs, right up there with the work-
ings of the Kill Ring. And just like the latter, there are alternatives
available (thanks to the extensible nature of Emacs).

The undo-tree package is the most popular alternative. Instead
of a linear list of changes that (confusingly?) includes undos, it orga-
nizes the undo history as a branching tree, which makes it easier to
understand. The author cheekily asserts:

The only downside to this more advanced yet simpler undo system is
that it was inspired by Vim. — Toby Cubitt

It’s an impressive package and it can coexist with standard Undo
(you can switch back and forth, or set up separate key bindings)
but I find it to be more intrusive than the default Undo, especially if
you turn on its visualizer and integrated diff (which is what makes
it especially easy to understand). See the screenshot at the Emacs
Wiki. Personally, I think with a little practice you can get completely
comfortable with standard Undo. But if you want undo-tree just add
the following snippet to your Init File:

(unless (package-installed-p 'undo-tree)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'undo-tree)))

;; to replace standard Undo everywhere

(with-demoted-errors "%s" (global-undo-tree-mode))

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops
https://www.dr-qubit.org/undo-tree.html
https://www.emacswiki.org/emacs/UndoTree
https://www.emacswiki.org/emacs/UndoTree

Approaching Programming: Keyboard Macros

I believe I can state without the slightest hint of exaggeration that
Emacs keyboard macros are the coolest thing in the entire universe. —
Steve Yegge

Thanks to its nature as a Lisp Machine, Emacs is probably the most
completely customizable and extensible piece of software in exis-
tence. Emacs is written in Emacs Lisp (Elisp) running in a Lisp inter-
preter that you can modify in real time, as it runs, to change almost
anything, and any brand new code you write can run immediately,
and interact with all the rest of Emacs itself.

This is fantastic and amazingly powerful. The only problem is, you
need to be an Elisp programmer to do it! We’ll address the goal of
becoming an Elisp programmer in in Programming the Lisp Machine,
but in this chapter, we’ll talk about how you can do some program-
ming with no Elisp skills.

Nothing is more tedious than manually making repetitious mass
edits to a file or files. M-x query-replace and especially M-x query-

replace-regexp can handle relatively simple cases, especially if cou-
pled with any of the Greps and Writable Grep, or Writable Occur;
Dired’s Q (dired-do-find-regexp-and-replace) command is also
available, and the Xref facility can do mass renames of identifiers in
your program source code.215 215 Other tools for mass edits include

Rectangles and the third-party Multiple
Cursors package.

But some mass edits are too complicated for any of those solu-
tions.

A Keyboard Macro (hereafter, a Macro) is a shorthand way of re-
executing a longer sequence of commands. A function in a program-
ming language (like Elisp) can be thought of in exactly the same
terms, but to write one you have to compose the function in a Buffer,
and evaluate it (assuming you know the syntax and semantics of the
language).

Instead, a Macro is quickly defined at the point where it’s needed:
you tell Emacs to start recording, embark on a sequence of com-
mands (key strokes) to perform one instance of your task, and
then stop recording. Now you can immediately re-run those steps,
whether once or twice or by telling Emacs to run the Macro as many

https://sites.google.com/site/steveyegge2/effective-emacs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macros

256 keith waclena

times as it takes to do all the repetitions. Then you just forget about
it.

Or instead, you might re-run the macro hours (or days) later, as-
suming you haven’t exited Emacs, and if the Macro has turned out
to be generally useful, you can save it for future sessions, optionally
giving it a name and possibly binding it to a key. You can have sev-
eral anonymous Macros defined in your session and switch between
them, and you can edit any of them to fix a bug or make an enhance-
ment.

Note that Macros are defined globally and are not Buffer-local.
You can define a Macro in one Buffer, and then switch to a different
Buffer to execute it.

Your First Macro

Suppose you have a list of author names in inverted form and want
to change them all to a different format:

Brackett, Leigh

Durrell, Gerald

O'Brian, Patrick

Ambler, Eric

Fleming, Fergus

Mundy, Talbot

Instead of “Brackett, Leigh” you want “Leigh BRACKETT”, and so
on.

In order to make these changes with a Macro, you just have to do
the first one while recording, and then all rest can be done automati-
cally.

Here’s my algorithm. I have to start by positioning Point at the
beginning of the list. Now I perform these steps:216 216 Interestingly, I used a Macro to

generate this list of steps from the
recorded Macro definition!M-u (upcase-word) giving “BRACKETT”

C-d (delete-char) eliminating the comma

M-t (transpose-words) flip the two parts

C-f (forward-char) move to the beginning of the next line

To turn this algorithm into a Macro and apply it, you only need to
learn three things:

1. how to start recording,

2. how to stop recording, and

https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Transpose
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 257

3. how to invoke the Macro you just defined.

You start recording with C-x (; you’ll see the message “Defining
kbd macro. . . ” in the Echo Area and the indicator “Def” will light-up
in the Mode Line until you’re done. Now you perform the actions
that comprise your Macro, any sequence of commands of any length;
now you’ve done the first of presumably many repetitions of your
task.

You stop recording with C-x); you’ll see “Keyboard macro de-
fined” and the “Def” indicator will go away.

Now you can invoke the macro with C-x e (kmacro-end-and-
call-macro): it re-executes your sequence of commands. Since we
ended the Macro by moving to the beginning of the next line, we’re
ready to invoke it immediately without having to move into position.
We’ll call C-x e five more times, and the result will be:

Leigh BRACKETT

Gerald DURRELL

Patrick O'BRIAN

Eric AMBLER

Fergus FLEMING

Talbot MUNDY

Repeating a Macro

Perhaps you noticed this message in the Echo Area after your first
C-x e:

(Type e to repeat macro)

After any C-x e you can immediately rerun the Macro by just typing
e.

You can also have Emacs repeat the Macro for you. You can give
C-x e a numeric argument, and Emacs will repeat it that many times.
Occasionally it’s obvious how many times you need to invoke a
Macro, but it’s much more common that you just know you need
to invoke the Macro a lot. It’s very common to want to reapply the
Macro as many times as possible, all the way to the end of the Buffer.

You can auto-repeat the Macro by giving C-x e a numeric argu-
ment of zero (standing for infinity) as in C-u 0 C-x e. The Macro
will just repeat over and over until it gets an error (which will usu-
ally happen at the end of the Buffer) or until interrupted with C-g

(keyboard-quit).
If you want to apply a Macro to a big chunk of text, but not the

whole Buffer, just Narrow the Buffer with C-x n n, go to the begin-
ning of the narrowed region and invoke the Macro infinity times.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting

258 keith waclena

When it beeps, having hit the end of the (narrowed) Buffer, you’re
done, and you can widen it again with C-x n w.

It is possible to define a Macro that loops infinitely! A simple
example is:

C-x (foo C-x)

In other words, a Macro that just inserts “foo”. If you C-u 0 C-x

e this Macro, it will just insert “foo ” forever, until you fill up all
of memory and maybe crash your Emacs — welcome to Computer
Programming! Best only to use C-u 0 with a Macro that can fail (like
a Macro that includes a search).

Aborting a Macro Definition

If you need to abort the definition of your Macro, perhaps because
you realize your algorithm isn’t exactly right, all you need to do is
hit C-g (keyboard-quit). This terminates the Macro definition mode
and discards all the steps you just recorded. It does not undo all
the commands you invoked however, so if you want to start your
definition over from scratch, you’ll have to Undo. If you want to pick
up your aborted Macro definition and fix it without having to redo
the whole thing, see C-x C-k l (kmacro-edit-lossage) below in
Editing Your Macro.

Line-by-Line Macros

Many Macros, like our example, are intended to be applied to a line
at a time; that’s why we used C-f at the end, to advance to the begin-
ning of the next line. But there’s a special command to simplify both
the definition and execution of this kind of Macro.

You just define your Macro, starting at the beginning of the first
line, without worrying about ending up at the beginning of the next
line; then, definition finished, you set the Region around any se-
quence of target lines, and invoke C-x C-k r (apply-macro-to-
region-lines). This invokes your Macro exactly once on each line of
the Region; it automatically positions Point at the beginning of each
line before each repetition. So with C-x C-k r our Macro could be as
simple as M-u C-d M-t.

What Happens If You Make a Mistake?

As you’re defining, if any command you invoke raises an error, the
definition will be aborted. The steps that comprise your Macro have

https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Edit-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Keyboard-Macro

use gnu emacs the plain text computing environment 259

to be error-free. By far the most common such error must be search-
ing for some text that doesn’t actually exist.

Searches are a very common part of many Macros; often you use a
search to get to the next place in the Buffer that you want to change.
The natural effect of this is to terminate automatic repetitions of your
Macro when there are no more matches, so that kind of error is not
only okay, but a key part of Macro design. But often you’ll discover
that your search is perhaps too specific and the resulting error will
blow up your Macro early; you’ll just have to come up with a better
search.

Remember that Undoing is just another Emacs command, so you
if make a non-error-raising mistake while defining, you might be able
to just Undo it rather than starting over! In our example above, what
if instead of upcasing the name I accidentally downcased it? Instead
of aborting and starting over I could just immediately Undo and then
do the upcasing I intended. The Macro would now be: M-l C-/ M-u

C-d M-t C-f, which is, I suppose, less efficient, but it will work just
as well.

Speaking of mistakes, while you can (technically) use the mouse
in defining a Macro, I think it’s a bad idea. The mouse is a very com-
plex device, its effect depending on exactly where the mouse cursor
is at the moment, so replaying mouse events is very unreliable.

Minibuffer Prompts

If in defining your Macro you invoke a command that prompts you
for input via the Minibuffer, then when the Macro is run, you will
not be prompted again: the command will use the same text you en-
tered during definition. This is usually what you want. For example,
suppose your Macro is gathering text from the current Buffer and
saving it in another Buffer via M-x append-to-buffer, which prompts
you for the name of the other Buffer: if you need to run that Macro
a hundred times, you don’t want to have to retype the Buffer name
each time!

Because of this behavior, it’s also common to just define a Macro
that invokes a single M-x command that you are about to use several
times; defining:

C-x (M-x append-to-buffer RET stuff RET C-x)

means you can just say C-x e to gather some text, rather than the
long-winded M-x append-to-buffer plus at least a M-p to pull up the
Buffer name you’re using.

There’s one thing to keep in mind though: in entering something
like a Buffer name, you should be conservative in exploiting the con-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Accumulating-Text

260 keith waclena

veniences of your Completion framework! In normal Emacsing, you
might enter a Buffer name by typing only a few letters and hitting
return when Completion presents the right name. If you do this in
a Macro definition, the next time you run the Macro you might get
a different, unintended, Buffer name! This is most likely to happen
with a Macro that you run intermittently throughout a sesssion: per-
haps your Completion framework offers up matching Buffer names
in a different order depending on how recently you used them. It’s
good Macro practice to type out the whole name explicitly in this
scenario.

The Keyboard Macro Map

Keystrokes Category Action
C-x (Define start defining a Macro
C-x C-k s . . . the same
C-x C-k C-s . . . the same
<F3> . . . the same
C-x) end Macro definition
<F4> . . . the same (if defining)
C-x e Execute Execute latest Macro
<F4> . . . the same (if not currently defining)
C-u <F3> execute latest Macro and append new commands
C-x C-k r apply Macro line-by-line in Region
C-x C-k C-n Ring make earlier Macro the current Macro
C-x C-k C-p . . . reverse direction
C-x C-k C-d Delete the current Macro from the Ring
C-x C-k C-v View current Macro definition
C-x q Query Query the user
C-x C-k q . . . the same
<F3> Count Insert Macro counter value at Point
C-x C-k C-i . . . the same
C-x C-k C-c set the Counter’s value
C-x C-k C-f define the counter’s Format
C-x C-k C-e Edit Edit the current Macro definition
C-x C-k RET . . . the same
C-x C-k e Edit a Macro by its name or binding
C-x C-k l turn the Last few commands into a Macro
C-x C-k SPC edit (debug) the current Macro step-by-step
C-x C-k b Bind kmacro-bind-to-key
C-x C-k n kmacro-name-last-macro
C-x C-k x kmacro-to-register

Table 28: Keyboard Macro Commands

There’s a whole family of Macro commands on the C-x C-k prefix,

use gnu emacs the plain text computing environment 261

and a few other handy key bindings as well. In Table 28 I’ve gathered
them in several groups. Let’s take a look.

Macro Definition Commands

Instead of the C-x (and C-x) commands I’ve been using above,
you should probably use the quicker and cleverer <F3> and <F4>.217 217 I learned C-x (and C-x) decades

ago and didn’t really know anything
about <F3> and <F4> until I started
researching this chapter. . .

These two commands are context-sensitive. <F3> begins a Macro
definition just like C-x (and <F4> terminates a Macro definition
just like C-x), but if you’re not in the middle of defining a Macro,
<F4> instead executes the Macro like C-x e does, and since it’s a sin-
gle keystroke, you can felicitously re-invoke it several times in row;
hence, it doesn’t need the “(Type e to repeat macro)” trick. So with
these keys, whipping up and executing a Macro is as simple as: <F3>
defining commands <F4> <F4> <F4>

If you give <F3> a C-u prefix i.e. C-u <F3>, it allows you to extend
the definition of your current Macro: it executes the Macro once but
then reenters definition mode, allowing you to add more commands
to the end of definition. Terminate this extension with <F4> as usual
and the next time you execute it, your added commands will be
included.

This is a simple way of editing your Macro (for more elaborate
editing see Editing Your Macro below).

You can also think of it as allowing incremental definition: define
your Macro in stages. Going back to our author-name-reformatting
Macro above, we could have defined as before:

<F3> start defining

M-u upcase last name

C-d delete comma

M-t transpose words

<F4> done!

But now after trying it a couple times, we might decide that we really
want to add a “bullet” at the beginning of the line, so we can extend
the definition:

C-u <F3> append commands to Macro definition

C-a go to beginning of line

+ SPC add a “bullet”218 218 Leading +-signs render items as a
bullet list in Org Mode markup.

<F4> done!

Now our remaining author names will come out like this:

262 keith waclena

+ Lynda BARRY

+ Ian FLEMING

The Macro Ring

You can have any number of Macros defined simultaneously.219 219 Well, you can set kmacro-ring-max to
be as big as you like; the default is only
8, which has always been plenty for me.

They are stored in a typical Emacs ring structure, so if you define
a second Macro in your session, it’s pushed onto the front of the
Macro Ring, eclipsing your previous definition. From now on, all
Macro invocations via <F4> and friends execute the new one.

Unless you rotate the Macro Ring of course! To execute your pre-
vious Macro, do C-x C-k C-n (kmacro-cycle-ring-next).220 The 220 I know, “next” gets “previous”? Is

the snake eating its tail or is the tail
being eaten by the snake? Everything is
relative.

previous Macro’s definition will be shown in the Echo Area; it’s a
mite cryptic, but you should be able to recognize it since you defined
it recently! Here’s our extended author-name-reformatting Macro
appears:

Macro: M-u C-d SPC M-t C-a + SPC

Repeating C-x C-k C-n will cycle around the Ring; just stop when
you’ve found the Macro you want and now <F4> will execute that one
instead, and keep executing that one until you rotate again or define
a newer one.

If you overshoot in your cycling, C-x C-k C-p (kmacro-cycle-
ring-previous) will reverse direction. You can quickly delete the cur-
rent Macro with C-x C-k C-d (kmacro-delete-ring-head), and there
are a few more Macro Ring commands and a mechanism for short-
hand keystrokes, but these are for real professionals: I’ve never had a
complex-enough set of Macros to have needed them; see “Keyboard
Macro Ring” in the Emacs manual.

You can review the Macros in the Ring with C-x C-k C-v (kmacro-
view-macro-repeat); it displays the definition in the Echo Area with-
out actually rotating the Ring; an immediate C-v cycles to show the
next. While you’re cycling, you can execute the currently-displayed
Macro by immediately typing C-k, without having rotated it to the
front of the Ring.221 221 The C-k has to be entered immediately

after a C-x C-k C-v or else it’s just a
normal C-k (probably kill-line!).

If you really need to use several different Macros at a time, you
might find it easier to just bind them explicitly to keys, or give them
names; see Naming and Binding Your Macros.

Macro Query

Keyboard Macros really are a programming language, but they do
seem like they’re not a Turing Complete one, since they’re lacking
the necessary conditional statement.222 However, the handy C-x q 222 Of course, you can always reach out

to Elisp within a Macro via M-: (eval-
expression) and the like.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Killing-by-Lines
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval

use gnu emacs the plain text computing environment 263

(kbd-macro-query) command directly supports a limited amount of
conditional or dynamic action within your Macro.

The most basic function of C-x q is to stop at a certain point and
ask you if you want to continue with the Macro. Suppose we’re about
to define our author-name-reformatting Macro, but we know in ad-
vance that we only want to apply it to some of the lines in the Region.
We could just live with not being able to run it over the whole Buffer
automatically (via C-x C-k r (apply-macro-to-region-lines)) and
invoke it manually one line at a time. But we could instead begin the
Macro with C-x q i.e. C-x q M-u C-d M-t.

Each time we run the Macro, C-x q will ask in the Minibuffer:

Proceed with macro? (Y, N, RET, C-l, C-r)

and wait for a response, which can be any of the following:

Key Action
Y Finish this iteration normally and continue with the next.
N Skip the rest of this iteration, and start the next.
RET Stop the macro entirely right now.
C-l Redisplay the screen, then ask again.
C-r Enter recursive edit; ask again when you exit from that.

If we’re running the Macro with C-x C-k r, We can respond Y on the
lines where we want to apply the Macro, and N where we don’t.

Most powerful is that we can enter a Recursive Edit, which would
allow us to make a local, manual, tweak in each execution.

Macro Counters

Every Macro has its own counter which you can use to number things
while it executes. Perhaps instead of a bullet list of reformatted au-
thors, we want to make a numbered list. All we need to do is use C-x

C-k C-i (or <F3>, which is equivalent when you’re already defining)
at the appropriate spot in our definition: C-x C-k C-i . SPC M-u

C-d M-t. Now when we run our Macro with C-x C-k r the result is:

0. Gerald DURRELL

1. Patrick O'BRIAN

2. Eric AMBLER

3. Fergus FLEMING

4. Talbot MUNDY

If you move around or do other things and then <F4> your Macro
again, it will continue with number 5. You can reset the count with
C-x C-k C-c (kmacro-set-counter).223 223 Practically speaking, if you really just

want to number lines, the easiest way
is with C-x r N (rectangle-number-
lines); see Rectangles.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Query
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Counter

264 keith waclena

I’m sure you’ve noticed that the Macro Counter starts at zero. . .
That’s because programmers count from zero. If you’re not a pro-
grammer, or you’re a programmer who wants to act like a normal
human at this moment, just set the Counter to 1 before you invoke
the Macro for the first time: C-u 1 C-x C-k C-c.

In addition to its Counter, each Macro also has it’s own Counter
Format. You can change it by calling C-x C-k C-f (kmacro-set-
format) at the beginning of your definition.224 This allows you to get 224 If you call it outside of definition

mode, it will set the default format for
all subsequent Macro definitions.

leading zeros or spaces for a fixed-width number column:

0013. Eric AMBLER

or even number your list in hexadecimal. If you’re a programmer,
you’ll have guessed that this uses a printf format string; see “For-
matting Strings” in the Elisp manual.

Editing Your Macro

In the old days, it was inevitable that after (or during) the definition
of an elaborate Macro, you would discover a mistake; there was noth-
ing to do but start over from scratch. But we 21st century Emacsers
have C-x C-k C-e (kmacro-edit-macro-repeat) and can edit our
definition to correct it, or further enhance a working Macro.

We’ve seen C-u <F3>, but that’s just a poor man’s approxima-
tion225 that only allows you to append new commands to the end. 225 Or a handy shortcut, if you’re feeling

generous.C-x C-k C-e pops up a special Buffer *Edit Macro* that displays
the definition line-by-line with explanatory comments, and you can
delete steps, rearrange them, and add new commands at will. Let’s
edit our author-name-reformatting Macro. C-x C-k C-e edits the cur-
rent Macro (at the front of the Ring), so if the one you want to edit
isn’t there, rotate the Ring appropriately,

;; Keyboard Macro Editor. Press C-c C-c to finish; press C-x k RET to cancel.

;; Original keys: C-x C-k C-i . SPC M-u C-d M-t

Command: last-kbd-macro

Key: none

Macro:

C-x C-k C-i ;; kmacro-start-macro-or-insert-counter

. ;; self-insert-command

SPC ;; self-insert-command

M-u ;; upcase-word

C-d ;; delete-char

M-t ;; transpose-words

Note that there are several Elisp comments in this Buffer: everything
from a semicolon to the end of the line is a comment. These com-
ments are insignificant to your Macro editing; nothing you might
change in a comment here (including deleting it entirely) has any
effect. In general, differences in whitespace are also insignificant.

https://en.wikipedia.org/wiki/Zero-based_numbering
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Counter
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Counter
https://en.wikipedia.org/wiki/Printf_format_string
https://www.gnu.org/software/emacs/manual/html_node/elisp/Formatting-Strings
https://www.gnu.org/software/emacs/manual/html_node/elisp/Formatting-Strings

use gnu emacs the plain text computing environment 265

The defining parts of the Buffer are the non-whitespace charac-
ters following the word Macro: (and ignoring the comments). Each
command in the definition consists of the keystrokes used to in-
voke it, spelled the way Emacs spells them when you use C-h c

(describe-key-briefly) (which is the way you see these keys spelled
throughout this book). So SPC for the Space key, RET for Return, etc.
Remember, amounts of whitespace (including line breaks) make no
difference: the definition could be all on one line like:

C-x C-k C-i . SPC M-u C-d M-t

the three keystrokes C-x C-k C-i could be split across three lines, etc.
If you repeat a command several times in a row, you might see this

format:

4*M-u ;; upcase-word

which means you typed four M-u’s here; you can use this notation
yourself.

Suppose you want to change your Macro to merely capitalize the
author’s last name instead of uppercasing all of it. Just change M-u to
M-c (capitalize-word) and hit C-c C-c to save your change. Simple

as that: now instead of “Eric AMBLER” you’ll get “Eric Ambler”.
Note that the Original keys section at top preserves the original

definition in a comment; you can grab bits of it if needed. Addition-
ally, the *Edit Macro* Buffer is a Buffer like any other you might
edit, so of course you can use Undo within it. But if you do mess up
or change your mind, you can always just bury or kill the Buffer and
your Macro remains unchanged.

If you’ve named or bound your Macro to a key (see below), you
can edit it with C-x C-k e (edit-kbd-macro). And you can also turn
a sequence of editing commands you just happened to type into a
Macro after the fact with C-x C-k l (kmacro-edit-lossage), which
pops up an *Edit Macro* Buffer loaded with the last 300 keystrokes
you typed (you’ll almost certainly delete a lot of them).

Debugging Your Macro

Real programming languages have interactive debuggers to help you
find bugs in your programs226, typically by single-stepping through 226 Elisp has two built-in debuggers.

the code: that is, running the program one instruction at a time so
you can see the effect of each one clearly and incrementally.

Surprisingly, Emacs also has a debugger for Macros!227 Position 227 I was certainly surprised when I
discovered this in writing this chapter!yourself for the execution of your Macro but instead of <F4> or C-x e,

run it with C-x C-k SPC (kmacro-step-edit-macro), Emacs will pop
up a small Window showing the definition of your Macro, and give

https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Edit-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Edit-Keyboard-Macro
https://en.wikipedia.org/wiki/Debugger
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Step-Edit

266 keith waclena

you a prompt. If you type SPC at the prompt, it will execute the first
command of your Macro — you’ll see the effect in the original Buffer
— and prompt you again. If you type SPC for every command in the
definition, you will have executed the Macro just as if you had typed
<F4>: only much more slowly!

This slow stepwise execution can reveal to you a bug in your
Macro, which you could then fix with the Macro editor (C-x C-k

e). But at each step, you can instead skip the current command, or
insert a new series of commands before or after it: any such changes
you make are saved and become part of the Macro’s definition, so
this is also a more interactive and perhaps intuitive way of editing
your Macro. See “Keyboard Macro Step-Edit” in the Emacs manual
for detailed instructions.

Naming and Binding Your Macros

If the Macro Ring seems a little too ascetic to you, you can easily
bind your latest Macro to a key with C-x C-k b (kmacro-bind-to-
key). This cautious command will prompt you for a keystroke; if you
choose one that’s already in use, it will ask you if you’re sure you
want to replace that binding with your Macro.

Since there are something between 200 and 1,000 active key bind-
ings in a typical Emacs, you might have trouble coming up with an
unused keystroke! As a convenience, if you type any of the digits 0-9
or the capital letters A-Z, your Macro will be bound to that key in the
C-x C-k keymap. So if you type C-x C-k b and repond Q, your Macro
will be bound to C-x C-k Q.

With C-x C-k n (kmacro-name-last-macro) you can instead,
or also, give your Macro a long name that you can use with M-x

(execute-extended-command).
Both of these binding commands only last until the end of this

Emacs session. If you want to save your Macro permanently, pull
up your Init File, jump to the end of it, and invoke M-x insert-kbd-

macro; this command will prompt for the name of your Macro228 228 You have to have named it first. . .

and convert it to Elisp, which it will insert into the current Buffer at
Point. It might look a little cryptic; here’s one possible form for our
author-name-reformatting Macro:

(fset 'reformat-author-name

(kmacro-lambda-form [escape ?u ?\C-d escape ?t] 0 "%d"))

If you gave your Macro a key binding as well as a name, you can use
C-u M-x insert-kbd-macro instead, which will also save your key
binding:

(fset 'reformat-author-name

https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Step-Edit
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/M-x
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Keyboard-Macro
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Keyboard-Macro

use gnu emacs the plain text computing environment 267

(kmacro-lambda-form [escape ?u ?\C-d escape ?t] 0 "%d"))

(global-set-key [24 11 81] 'reformat-author-name)

With this code in your Init File, your Macro will be available every
time you begin an Emacs session.

A Musical Example

Let’s finish up with one more example. I play the ukulele and guitar
and have hundreds of files of lead sheets. I usually write them out in
this format: song lyrics with the chords written above the lines, like
so:229 229 The Verlaines: “Anniversary” (Some

Disenchanted Evening, 1989)
A D A7 Gbdim

And she said, "By the time that you open your eyes

G D7 G

There will not be a shoulder in sight."

This is convenient for editing, but when I’m done with a song, I want
to convert it into the de facto standard ChordPro format (which is
harder to edit):

And she [A]said, "By the [D]time that you [A7]open your [Gbdim]eyes

There will [G]not be a [D7]shoulder in [G]sight."

Obviously converting from the former to the latter calls for a Macro;
here’s the one I whipped up:

C-e ;; move-end-of-line

M-\ ;; delete-horizontal-space

C-u - ;; self-insert-command

M-C-k ;; kill-sexp

C-n ;; next-line

[;; self-insert-command

C-y ;; yank

] ;; self-insert-command

C-p ;; previous-line

After using this for a while, I made some tweaks to it; then I turned it
into an Elisp function to make it more robust; and ultimately it grew
into a Major Mode for editing ChordPro files.

https://en.wikipedia.org/wiki/Lead_sheet
https://www.chordpro.org/chordpro/chordpro-file-format-specification/

The Customize Facility

The simplest kind of Emacs customization is to change the value of
any of the 2,951 User Options or Faces. While an Elisp programmer
might choose to do this via an Elisp expression in the Init File, it’s
very easy for the non-programmer to do via the interactive Customize
facility, which presents the variable’s default value, its current value,
its legal possible values, its documentation, links to related variables,
and an easy interactive way to modify the value.

One of the big advantages of Customize over customization via
Elisp, even for experienced Elisp programmers, is the amount of
bookkeeping that Customize does for you. It keeps track of what
you’ve customized, allowing you to restore or further tweak the value
of something you changed and now regret.

Entry Points

The entry points to the Customize facility range from customizing
one single Variable or Face, up to high-level browsing of everything
customizable; Table 29 summarizes most of them.

M-x customize-variable Customize a single named User Option
M-x customize-variable-other-window . . . in the other Window
M-x customize-face Customize a single named Face
M-x customize-face-other-window . . . in the other Window
M-x customize-mode Customize all Variables related to a major or minor mode

M-x customize-group Customize GROUP, which must be a customization group
M-x customize-group-other-window . . . in the other window

M-x customize Customize anything or everything
M-x customize-browse . . . same, via a tree-structured interface

M-x customize-apropos-options Customize all loaded Options matching a REGEXP
M-x customize-apropos-faces Customize all loaded Faces matching a REGEXP
M-x customize-apropos-groups Customize all loaded groups matching a REGEXP
M-x customize-apropos Customize loaded Options, Faces and groups matching a PATTERN

Table 29: Customization Commands

(customize-variable also goes by the name customize-option,
and customize-variable-other-window is also known as customize-

option-other-window.)

270 keith waclena

To aid browsing and navigation, customization Variables are orga-
nized in groups; often each Emacs package in the Package Manager
defines its own group, but there are also broader groups defined. M-x
customize-group let’s you see all the Variables and Faces for such
a group; M-x customize-group RET isearch will show you every-
thing you can change about Incremental Search, for example: around
40 Options . While you can discover the Customization groups via
Completion on M-x customize-group, if exploration is your goal you
can use M-x customize and navigate through all the groups and sub-
groups in a leisurely manner.

You can also enter the facility via Apropos. Suppose you want
to tweak the options relating to how sentences are recognized, but
you don’t know the name of the appropriate group. M-x customize-

apropos with the keyword “sentence” will bring up five pertinent
Variables.

Experiment Without Fear

You don’t have to worry very much about entering the Customize
facility and messing things up. All the changes you make happen
in three steps: first editing a value, then setting it (which causes it to
take effect in this session), and finally saving the change for future
sessions. You can feel free to edit a value just to see what it looks
like: doing so won’t have any effect unless you also set it. If you’ve
edited a value and it looks undesirable to you, you don’t even have
to restore it if you haven’t set it yet. You can simply kill the Buffer,
or bury it and never come back; it will be as if you were never there.
And if you have set it, Customize remembers the previous value and
makes it easy to restore it. It’s even easy to find changes you’ve saved
for all future sessions and restore them, if it turns out you don’t like
something you’ve done.

Changing the Value of a Variable

Depending on which entry point you’ve chosen, the Customize
Buffer will have one or possibly many Variables or Faces you can
change.

Let’s consider doing M-x customize-variable RET list-command-history-max

(see The Minibuffer). In the Customize Buffer, we’ll see something
like:

List Command History Max: [Value Menu] Integer: 32

[State] : STANDARD.

If non-nil, maximum length of the listing produced by ‘list-command-history’.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Easy-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

use gnu emacs the plain text computing environment 271

We can see the name of the Variable230, its current value (here 32), its 230 Presented, somewhat annoyingly
IMHO, in a “cleaned up” form, with
hyphens replaced by spaces and all
components capitalized.

customization state (here “STANDARD”), and its documentation.
You can change the value by editing the current value in the Buffer

(just change the 32 to something else) or by clicking231 the “Value 231 Either with the mouse or by moving
Point to the button and hitting RET.Menu” button.

Some Variables are simple and only accept a single sort of value
(say, a number or a string), but others have more complex possibili-
ties, and the Value button gives you a way of unambiguously enter-
ing them: Boolean variables can toggled on or off, for example, and
it’s very common for Variables to allow an out-of-band nil option that
can be interpreted in a variety of ways (described in the Variables’s
documentation).

It’s also very common for a Variable to take a complex value, like
a list of things; in this case, there will be additional buttons to add or
delete individual elements of the list. See “Changing a Variable” in
the Emacs manual for complete details.

When you change the value, whether by clicking or editing, the
State button will change from “STANDARD” to “EDITED”. To ac-
tually apply your edit you need to set the value. Click on the State
button and you’ll see a menu of options:

Set for Current Session
Save for Future Sessions
Undo Edits
Revert This Session’s Customization
Erase Customization
Add Comment

The first two should be self-explanatory; “Undo Edits” restores this
Variable to the value it had when you entered the customization
Buffer; “Revert” restores the value to the last saved value (or restores
the default Emacs value if you’ve never saved it), and “Erase” re-
stores the standard value (what the Option would be if you started
up an uncustomized Emacs). “Add Comment” let’s you document
your changes and saves a comment that will be displayed along with
this value in future Customize sessions.

Customizing Multiple Options

While customize-variable and customize-face present one value
at a time, most of the other Customize entry points let you view and
change multiple values in one go. So each Customize Buffer has three
extra buttons at the top:

Operate on all settings in this buffer:

[Revert...] [Apply] [Apply and Save]

https://www.gnu.org/software/emacs/manual/html_node/emacs/Changing-a-Variable

272 keith waclena

These buttons let you finish up multiple edits in one stroke: “Apply”
will set all the Variables in this Buffer whose values you’ve changed;
“Apply and Save” also saves them for future sessions; and “Revert”
will undo any sets you’ve done.

Customizing a Face

Customizing a Face is much the same as customizing a Variable; it’s
mostly just a little more colorful.

Let’s say you don’t like the look of string literals in your favorite
programming language. Just pull up a file, position Point on one of
the offending strings, and say M-x customize-face. The prompt will
look something like:

Customize face (default ‘font-lock-string-face’):

(The default Face is that of the character where point is.) Hit re-
turn and you’ll be given a Customize form:

Figure 36: Customizing a Face.

(This Face only defines a “Foreground” color so the other at-
tributes aren’t shown; click Show All Attributes to change others.)
If you click on the “Choose” button, the colorful *Colors* Buffer will
pop up; browse it, and click the color you like (you can instead just
type a color name232 or RGB triplet #RRGGBB into the form where it 232 You can’t just make up a name; it

needs to be a correctly spelled offi-
cial color name for your OS, like say
PapayaWhip.

says “LightSalmon”233).

233 Mmmm. . . salmon. . .

Note that if you customize a Face this way starting from, say, a
python-mode Buffer, it will affect all Modes and Buffers that use this
exact, named, Face. A given Major Mode may define its own Faces,
but font-lock-string-face is a standard Emacs Face and is used
by many, perhaps most, Major Modes for syntax-highlighting string
literals. The good news is, if you hate that Face in one Mode you
probably hate it everywhere, so a sweeping change is appropriate!
But if you only hate it for strings in python-mode, you’ll have to get
fancier to only change it there — I won’t go into this here, but such is
the power of Emacs that this is completely doable.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

use gnu emacs the plain text computing environment 273

Customize Buffers Are Non-Modal

Like almost all of Emacs, Customize Buffers are not modal. That is,
when you fire up a Customize Buffer, you don’t have to commit to
finishing the job right now. Take your time. The Buffer keeps track
of your state. You can set one or more new values without saving
them. This allows you to spend some time seeing how you like the
changes you made. If you like them, you can just switch back to this
Buffer later and then click “Apply and Save” (bound to C-x C-s in
Customize Buffers). If you kill the Buffer after “Apply” but later
(in the same session) reinvoke Customize with the same Variable or
Face, you’ll see that Emacs has remembered your changes, and you
can now save them, revert them, or make further changes.

If you’re really casual about your customizations, you might forget
to save the ones you set for future sessions. I recommend this setting
for your Init File, which causes Emacs to check with you when you
exit—you’ll be able to pull up a special Customize Buffer that con-
tains all the values you’ve set but haven’t yet saved, and you can take
care of it.

Init File
(add-hook 'kill-emacs-query-functions

'custom-prompt-customize-unsaved-options)

Long-Term Customization Management

There are some convenient commands for the long-term management
of your customizations. M-x customize-unsaved (also known as M-x

customize-customized) will pull up a Customize Buffer that pulls to-
gether all the customizations you’ve made in this session but haven’t
yet saved, which makes it easy to review, possibly change, and then
save them all.

From an even longer-term perspective, M-x customize-saved will
give you a Customize Buffer containing all the customizations you’ve
ever saved, across all sessions; this is very handy if, after a month or
so, you figure out you’re unhappy with something you’ve changed,
and want to undo or tweak it.

While we’re thinking in the long term. . . GNU Emacs has been
around for 38 years already, and I’m confident that it will be around
for many more years to come; there have been 1.36 new Emacs re-
leases every year, on average. That means it won’t be long before
your OS package manager presents you with a fresh new Emacs in
which some User Options will inevitably have been changed. M-x
customize-changed (a.k.a M-x customize-changed-options) will
present a Customize Buffer containing all these changed variables for
you to consider.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/history.html
https://www.gnu.org/software/emacs/history.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

274 keith waclena

Finally, if, like me, you’ve changed some User Options directly
via Elisp in your Init File, M-x customize-rogue will let you see all of
these in a Customize Buffer.

Where Are Customizations Saved?

The Customize Facility saves your customizations at the end of your
Init File in two sections, one for User Options that looks like this:

(custom-set-variables

;; custom-set-variables was added by Custom.

;; If you edit it by hand, you could mess it up, so be careful.

;; Your init file should contain only one such instance.

;; If there is more than one, they won't work right.

...)

and one for Faces:

(custom-set-faces

;; custom-set-faces was added by Custom.

;; If you edit it by hand, you could mess it up, so be careful.

;; Your init file should contain only one such instance.

;; If there is more than one, they won't work right.

...)

As the warning indicates, you should avoid editing these special
sections. If you notice something there that you want to fix, do it via
M-x customize-saved.

It’s also possible to tell Emacs to store these Customization sec-
tions in a different file entirely; this is only necessary if you’re doing
something fancy with your Init File, like generating it programmati-
cally for example.

Customizing Key Bindings

The one thing the Customize Facility doesn’t support is customizing
your own key bindings; you have to do that in Elisp; see Modifying
Key Bindings.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

The Package Manager

Emacs organizes most of its 20,896 commands and functions into
474 libraries: groups of functions related by purpose. When brand
new functionality is added, as opposed to existing functionality be-
ing merely enhanced, the new code is organized as a new library;
the libraries comprise 1,505 files of Emacs Lisp source code that are
shipped together with Emacs.

Rather than Emacs just forever acquiring more and more new
functions, and getting bigger and bigger all the time (which cer-
tainly still happens to some extent), this scheme allows major chunks
of code that perhaps not everybody wants to use to be loaded into
memory in a lazy fashion. If you’re not going to be printing to a
Postscript printer today, why bother loading the 226K ps-print li-
brary? This lazy approach is called autoloading; you’ll see the word
when looking at the documentation for commands and functions via
the Help facility, as in:

ps-print-buffer is an autoloaded interactive Lisp function in ‘ps-print.el’.

Autoloading also speeds up start-up.
The next step up from library is package. A package is effectively

a library—that is, Elisp source files—together with data files, Info
documentation, and metadata (in the form of author information, a
package description, a version number, and typically a list of depen-
dencies: other packages that this package itself uses).

You can think of packages as plug-ins: software that adds new
functionality to Emacs. You can install and uninstall them in real-
time, as you use Emacs, without having to quit and restart.

Thanks to packages, third parties can write their own libraries and
easily contribute them to collections of packages (called repositories
or repos), and thanks to the metadata, these repositories are also
searchable. The Free Software Foundation maintains two repositories
of contributed packages (called GNU- and NonGNU-ELPA234), and 234 “ELPA” stands for Emacs Lisp

Package Archive.there are two major community-maintained repositories (MELPA and
Marmalade), and probably more that I don’t know about.

I recommend the GNU and NonGNU repositories, with 607 pack-

https://en.wikipedia.org/wiki/Plug-in_(computing)

276 keith waclena

ages between them, and MELPA with 5,490, but I don’t recommend
Marmalade; it moves at a more aggressive pace and when I used to
use it, packages could get updated several times a day and any one
of those updates might be (briefly) buggy. But your mileage may
vary!

Configuration

Recent versions of Emacs come with the GNU and NonGNU ELPA
repositories configured and ready to use. This Init File snippet adds
the MELPA repo as well, and also assigns repo priorities that put a
premium on stability (so, if a package appears in both the carefully
curated GNU repo and in MELPA, we prefer the GNU version, all
else being equal; you can change this if you prefer to live on the
bleeding edge).

Note that the MELPA repo comes in two flavors: the stable repo
and the unstable repo. I give the stable repo a higher priority than
the unstable via the package-archive-priorities variable.

About Packages

How do you find out about these exciting additional packages? I
mention several in this book, and you can find out about many more
by following various Emacs mailing lists, blogs, and web forums. But
mostly you find them by searching and browsing in Emacs.

If you’ve got the name of a package to hand, perhaps Vertico, you
can read it’s description via C-h P (describe-package). This will pop
up a *Help* Buffer showing at least the package metadata, like this:

Package vertico is available.

Status: Available from gnu -- Install

Archive: gnu

Version: 0.20

Commit: 1bd5438da9c661e2df5e9516f36d9cbc6d100a34

Summary: VERTical Interactive COmpletion

Requires: emacs-27.1

Homepage: https://github.com/minad/vertico

Maintainer: Daniel Mendler <mail@daniel-mendler.de>

Author: Daniel Mendler <mail@daniel-mendler.de>

The description may include extra text; the Vertico *Help* Buffer has
700-odd more lines of documentation.

Searching and Browsing

A quick way to find packages is via C-h p (finder-by-keyword),
which pops up a Buffer containing a list of keywords—for example:

https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords

use gnu emacs the plain text computing environment 277

calendar calendar and time management tools

languages specialized modes for editing programming languages

mail email reading and posting

matching searching, matching, and sorting

However, this list is limited to built-in packages that come with
Emacs, and those in the built-in repos.

Much better is to use M-x list-packages, which will download
all the package descriptions from all the repos you have configured
(four, in the Init File snippet above) and add them to the built-in
packages. Here’s a tiny excerpt from the thousands of entries in my
Packages Buffer:
Package Version Status Archive Description

ace-jump-mode 2.0 available melpa-stable a quick cursor location minor mode for emacs
afternoon-theme 0.1 available nongnu Dark color theme with a deep blue background
vertico 0.20 available gnu VERTical Interactive COmpletion
org 9.4.4 built-in Export Framework for Org Mode
csv-mode 1.18 installed Major mode for editing comma/char separated values

The *Packages* Buffer is called the Package Menu. Hitting RET on
any of these lines pops up the same description that C-h P would
present. You can sort the entries by clicking on the columns in the
Header Line (typing S (tabulated-list-sort) will sort on the col-
umn containing Point), and of course use Incremental Search or
Occur.

You can also filter the entries (rather like an in-Buffer Occur) by
metadata keyword with / k (package-menu-filter-by-keyword); /
k calendar is exactly like selecting calendar from C-h p, except it
includes all the packages in the repos you configured. / n (package-
menu-filter-by-name) filters by package name, and / / (package-
menu-clear-filter) will restore all the entries.

The *Packages* Buffer is in fact your Emacs package manager,
and you can do all your package maintenance in this Buffer; see
Package Maintenance below.

Installing Packages

You can install a package by name, from any Buffer, with M-x package-

install: the package will be downloaded if necessary, compiled, and
loaded: it’s now ready to use. Once installed, the package is available
in future sessions (though some packages require enabling, typically
done in your Init File, and configuration, typically done via Cus-
tomize).

Installed packages live in your User Emacs Directory (see user-

emacs-directory, typically ~/.emacs.d/) in a subdirectory elpa.
You can also install packages directly from your Init File, like this:

(unless (package-installed-p 'vertico)

(with-demoted-errors "%s"

https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu
https://www.gnu.org/software/emacs/manual/html_node/emacs/Several-Buffers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu
https://en.wikipedia.org/wiki/Package_manager
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Installation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Installation

278 keith waclena

(unless package-archive-contents

(package-refresh-contents))

(package-install 'vertico)))

(with-demoted-errors "%s" (vertico-mode 1))

This is a good way to make sure all the packages you like are in-
stalled in all your different Emacsen on your different computers,
assuming you synchronize your Init File; if you only use Emacs on
one computer, it’s simpler just to install your packages manually (ac-
tually, that’s all I do even though I use multiple Emacs installations:
I’ll quickly notice if a package is missing in some other installation as
soon as I try to use it).

Probably the most common way to install packages is from within
the Package Menu.

Package Maintenance

Package maintenance consists of installing new packages you want
to use, deleting old ones you no longer use, and updating your pack-
ages to the latest versions. All of these tasks are typically done in the
Package Menu. Table 30 lists the most useful maintenance key bind-
ings; searching was described above, and navigation is similar to any
other Special Mode Buffer.

Key Action
RET, ? describe the package
i mark package for Installation (with an I)
U mark all packages with Upgrades (with a U)
d mark package for Deletion (with a D)
~ mark all obsolete packages for deletion (with a D)
u Unmark this package
x eXecute all marks
g, r Refresh buffer from repo

Table 30: Package Menu Maintenance
Commands

The Package Menu works similarly to a Dired Buffer: you apply
various marks to different packages (marks appear in the leftmost
column), unmark any (with u) if you’ve changed your mind, and,
when you’re ready, execute all your marks with x (package-menu-
execute). Any packages you’ve marked for installation will be down-
loaded, compiled, and activated, and those marked for deletion will
be deleted (you can always reinstall them again at a future date).

You should periodically use the U (package-menu-mark-upgrades)
command to check for packages that have new, upgraded, versions
available. It will compare all the versions of your installed packages
with the latest versions in the repos and mark any upgradable pack-
age with a U. (This can take a minute or so, depending on the repo,

https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Menu

use gnu emacs the plain text computing environment 279

and so runs in the background.) When it’s done, use x to upgrade the
packages; after the new versions have been installed, it will offer to
clean up obsolete versions for you.

Should You Write Your Own Packages?

Creating a proper Emacs package is easier than any other language
I’ve used,235 but it still involves a few additional steps (e.g. writing 235 It’s also extremely easy to set up a

personal repository.metadata) compared to just creating your own library (which just
requires you to create a file of Elisp somewhere in your load-path).
There’s probably no need to go to the extra trouble of packaging if
you’re going to be the only user of your library.

But if you want to contribute your library to the Emacs commu-
nity, then you’ll need to package it; just follow the instructions in §41

of the Manual, Preparing Lisp code for Distribution.

Security Issues

Every package manager—for a programming language, the app store
on your phone, or an application like a web browser—comes with
security concerns, and Emacs is no different. See Security for more
information.

https://www.gnu.org/software/emacs/manual/html_node/elisp/Packaging

Updates and Bugs

Emacs Updates

I’ve mentioned before that there have been an average of 1.36 new
Emacs releases every year in GNU Emacs’s 38-year lifetime. That
means it won’t be long before your OS package manager presents
you with a fresh new Emacs.

Emacs’s backward compatibility is excellent, so it’s unlikely that
you’ll experience any breakage when you fire up your new Emacs:
your Init File will almost certainly still work perfectly, your key bind-
ings will still be the same. At most, some things may look slightly
different: changes in default fonts or colors for example, and you
can always fix these if you’re unhappy. You may see some depreca-
tion warnings if you’re using functions that are being phased out;
the Emacs developers tend to give a lot of lead time for deprecated
functions, so there’s no need to panic.

However, it is likely that there will be new features that you will
want to know about. C-h C-n (view-emacs-news) will display the
change log, a very extensive list of all the user-visible changes in
the version of Emacs that you’re running: that is, everything that
changed from the way it was in the previous version. If only you
could get this kind of information for all the web services you de-
pend on! If you invoke this command with a prefix argument, C-u
C-h C-n, you can request the change log for any previous version
of Emacs, all the way back to version 1.1 (the text of which is very
quaint!).

Emacs Bugs

What, does Emacs have bugs? Since all software does, I’m afraid
so. One of the unique things about a Lisp Machine is that you can
actually fix many bugs yourself, live, while your Emacs is running,
without recompiling or even restarting.

Assuming you’re a programmer that is. If you’re not, and you find
a bug, you should report it. But first, you should try to make sure

https://www.gnu.org/software/emacs/history.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Help-Files

282 keith waclena

that this really is an Emacs bug, and not a problem stemming from
some settings in your own Customizations or Init File. This means
firing up a fresh Emacs with the -Q option, which avoids loading
your init file and even some of the system-wide initialization, thus
giving you a really pristine Emacs:

emacs -Q

Now try to replicate your bug. You may need to manually load a
package that you require in your Init File if you think it’s implicated
in the bug; you can typically use M-x load-library to load it. The
point is to have as few non-standard customizations and loads as
possible.

The Manual contains an excellent chapter on reporting bugs, and
you should really read it before reporting one: after all, you’re having
a problem with free software that you didn’t have to pay for, and
asking people to help you with your problem for free. You can at
least try to make it as easy for them as possible.

If you can replicate your bug in this -Q environment, you can re-
port it. Just say M-x report-emacs-bug and an email composition
Buffer will pop up, with some instructions in another window. The
email will be populated with up to several hundred lines of data
about the current state of your Emacs: exactly which version you’re
running, how your Emacs was compiled, which packages you cur-
rently have loaded—all the kinds of information needed to help
figure out your bug. (You can delete any personal info that you might
be uncomfortable sharing.) You need to add a description of the bug,
ideally including a step-by-step recipe showing how to make the bug
happen. (“Put point at the beginning of the second word of a line
with at least five words in it, and now. . . ”)

If you’ve set up your Emacs to send mail, you can just use C-c C-c

(message-send-and-exit) and your bug report will be emailed to the
Emacs maintainers! (If you can’t send mail from within Emacs, you
can cut-and-paste the contents of the message into the mailer you
use, as explained in the help window.) There’s no guarantee that the
Emacs maintainers can fix your bug, of course: they may not even be
able to reproduce it, if it has something to do with your computer or
operating system or the phase of the moon.

Not Emacs’s Fault!

If you can’t replicate your bug in this -Q environment, then it’s prob-
ably not a bug in Emacs but in your Init File. You’ll have to fix this
on your own. Generally the way you do this is to comment out all
of your Init File except for the first line (really, the first complete s-
expression, which might span several lines), save it, and fire up a

https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Libraries
https://www.gnu.org/software/emacs/manual/html_node/emacs/Bugs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Checklist
https://www.gnu.org/software/emacs/manual/html_node/message/Sending
http://www.catb.org/jargon/html/P/phase-of-the-moon.html

use gnu emacs the plain text computing environment 283

fresh Emacs normally. Now see if your bug is fixed. If it is, you know
the problem is not in that first line, but rather in the part of your Init
File that you commented out!

But where? Well, now uncomment (i.e. restore) the next complete
s-expression and repeat the process. Eventually you’ll have restored
the line that contains the bug and you’ll know because suddenly the
bug occurs again. Now just fix the offending line and restore the rest
of your Init File, and you’re done!

This process can be really tedious if you have a large Init File236. 236 Welcome to computer programming!

There are much more efficient ways to do this: really, any program-
mer would use binary search to find the bug, and there are tools in
the Package Manager to do this automatically (see bug-hunter).

Helping Squash Bugs

If you’re a programmer, you can volunteer to help fix Emacs bugs;
all reported bugs are listed in the Emacs Bug Tracker. You can pick
one out and see if you can fix it; see “Contributing” in the Emacs
manual for more information. There’s an excellent interface to the
bug tracker in the Package Manager called debbugs that makes this
even easier.

https://en.wikipedia.org/wiki/Binary_search_algorithm
https://github.com/Malabarba/elisp-bug-hunter
https://debbugs.gnu.org/cgi/pkgreport.cgi?package=emacs;max-bugs=100;base-order=1;bug-rev=1
https://www.gnu.org/software/emacs/manual/html_node/emacs/Contributing
https://elpa.gnu.org/packages/debbugs.html

Exiting Emacs

All good things must come to an end, meaning you will occasionally
have to exit your Emacs. As you know, the usual command to use is
C-x C-c (save-buffers-kill-terminal). Note that if you are in an
emacsclient instance, C-x C-c only terminates that client, leaving the
server running. See Client / Server for details on how to terminate the
Server.

If you have any modified Buffers (unsaved files) when you exit,
Emacs will ask if you want to save these files before exiting with a
prompt like:

Save file emacs-tutorial/emacs-tutorial.org? (y, n, !, ., q, C-r, C-f, d or C-h)

This prompt is really from the function save-some-buffers which
C-x C-c calls. Your options for each file are summarized in Table 31.

Key Action
SPC, y save the prompted buffer
! save all remaining unsaved buffers
C-f switch to this File and stop exiting
C-r peek at this buffer, Read-only
d view a Diff of this buffer
C-g cancel the whole exit command
. save just the current buffer and exit
DEL, n don’t save the prompted buffer
RET, q don’t save this or any remaining buffers

Table 31: C-x C-c Modified File Prompt

The C-r and d responses allow you to peek at the file in question to
figure out whether or not you want to save or abandon your modifi-
cations.

If, after this process, you still have modified Buffers because you
answered n or q to one of the prompts, Emacs will ask:

Modified buffers exist; exit anyway? (yes or no)

(Emacs really wants to make sure you don’t lose your data!)
Additionally, if you have any running subprocesses, you’ll get a

another cautious prompt:

https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands

286 keith waclena

Active processes exist; kill them and exit anyway? (yes or no)

Along with this you’ll see a *Process List* Buffer showing all
your subprocesses. The processes in question might be shells or
terminals, or long-running commands you’ve fired up with M-&.
Remember that if you kill Emacs, which is the parent of these sub-
processes, the subprocesses will probably themselves die.237 237 This is somewhat outside the control

of Emacs, depending on your operating
system and how the program running
as a subprocess was written.

It’s easy to type C-x C-c by accident, and who wants to terminate
their long-running Server full of dozens of files? There’s no problem
if you have any modified file-visiting Buffers or subprocesses, thanks
to the above prompts, but I personally never want Emacs to exit
unless I’m about to reboot. So I have this snippet in my Init File:

(setq confirm-kill-emacs 'yes-or-no-p) ; exiting emacs is silly

which causes Emacs to ask me still once more if I really mean it.
I highly recommend exiting Emacs explicitly when you terminate

your login session (this of course includes rebooting or powering-
off your computer). This assures that Emacs has a chance to save
your files, and arrange for persistence if you’re using the Desktop
(see below). There’s no need to exit Emacs when you sleep your
computer, though if you’re the cautious sort238 you might do C-x s 238 After all, batteries occasionally run

down while your computer is asleep.(save-some-buffers) before sleeping (I do).

The Desktop: Persisting Your Buffers

You can easily have most of your file-visiting Buffers restored each
time you start up a fresh Emacs by turning on desktop-save-mode

and I recommend this for your Init File:
Init File

(desktop-save-mode 1) ; restore files from previous session

Not only are your file Buffers restored: so is your location (Point) in
each Buffer, its Major Mode, and even your Frames239, their Window 239 Your OS window manager is in

charge of exactly where each restored
Frame ends up on your screen; Emacs
can only suggest locations for them.

configurations, and all your Frame parameters (like fonts and font
sizes).

desktop-save-mode also saves the Tabs in your Tab Bar, the con-
tents of all your Registers, your EWW web Buffers, and probably
more (Emacs packages can readily hook themselves into desktop-

save-mode).
By default, remote files loaded from other systems are excluded

from being restored (in order to speed up restoration; also, the net-
work or certain remote hosts might be unavailable when you restore).
You can change this by Customizing desktop-files-not-to-save.

You can trash your saved Desktop configuration with M-x desktop-

clear—you might want to do this if it’s been such a long time since

https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Saving-Emacs-Sessions
https://www.gnu.org/software/emacs/manual/html_node/emacs/Saving-Emacs-Sessions
https://www.gnu.org/software/emacs/manual/html_node/emacs/Saving-Emacs-Sessions

use gnu emacs the plain text computing environment 287

you last ran Emacs240 that you’re no longer interested in any of the 240 I suppose that happens. . .

files you were last editing and they’re just clutter now. desktop-
clear zaps the saved Desktop config and also kills all the Buffers that
were initialized from that config.

desktop-save-mode definitely slows down your Emacs startup
speed. Since I use the Emacs Server, and only fire up Emacs at most
once every few weeks, I don’t mind this at all. But you can Cus-
tomize desktop-restore-eager in order to make the restoration of
your Buffers happen lazily—that is, delayed in the background in-
stead of all at once—which can give you a responsive fresh Emacs
immediately.

By default, there’s only one saved Desktop configuration, and you
generally don’t want another Emacs to use it: that will just cause
conflicts! So the Desktop config is locked by the first Emacs that re-
stores it, and any additional, newly fired-up Emacs will ask you if
you really want to steal the lock:

Warning: desktop file appears to be in use by process with PID 1004.

Using it may cause conflicts if that process still runs.

Use desktop file anyway? (y or n)

The only good reason to say yes is if the locking Emacs crashed, and
was unable to give up its lock, and isn’t actually running anymore241. 241 The message tells you the PID so that

you can check this.Note that there’s no desktop conflict when using emacsclient, since
it connects to the running Emacs and its desktop.

If you want to fire up a nonce Emacs, perhaps just to test a change
to your Init File242, and don’t intend to steal an existing desktop, just 242 Always good practice: I do this all

the time.add the --no-desktop option; see Starting Emacs!.

Starting Emacs!

Because I advocate using a long-running Emacs in Client / Server
mode, I haven’t talked much about the details of starting up a fresh
new Emacs, which weirdly makes this chapter the last thing in Part I
of the book.

Emacs has a number of command-line options to vary the details
of how it starts up. Many of the options are very exotic and only
useful to people doing really fancy stuff—for these, you can read the
man page or see “Emacs Invocation” in the Emacs manual.

The rest of the options can be divided into two categories: those
for scripting Emacs, and those for occasional everyday use. Most any
option in that latter category that you find yourself using all the time
can be better done in your Init File. Of course, my definition of these
two categories is just rhetorical: there’s no real division in use.

File Arguments

As usual for Unix programs, all command-line arguments that don’t
start with a hyphen are taken as the names of files to visit. So this
command:

emacs file1 file2 file3

has the same effect as firing up Emacs with no arguments and then
using C-x C-f (find-file) once for each file.

There’s one exception: an argument of the form +123 positions
Point at line 123 of the first file named on the command line. The full
form of this option is +LN:CN where LN is a line number and the
optional CN is a column number.

This old-fashioned option is used by certain programs to fire up
Emacs at the precise line where an error has occurred. vi(1) sup-
ports the same option, for example. In Emacs, we usually turn this
inside-out by calling M-x compile from inside our running Emacs,
and using C-x ‘ (next-error) to load the files and jump to the error
location; see Compiling Code. The + option might still occasionally be
useful to an Emacs user via emacsclient(1).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Emacs-Invocation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode

290 keith waclena

Occasional Options

Option = Long Option Action
-d DISPLAY --display=DISPLAY open Emacs on named X display
-nw --no-window-system open Emacs in this terminal
-daemon --daemon start the Emacs server

--version display version and exit
-q --no-init-file don’t load user’s init file

--no-desktop don’t load saved desktop
--debug-init debug your init file

-Q --quick don’t do any initialization

Table 32: Occasional Command-Line
Options

Table 32 lists what I think are the most useful occasional options.
-d and -nw let you choose between running this Emacs in Graph-

ical mode versus in a terminal. You’ll recall that I’m an advocate of
using Graphical mode. If you’re running Emacs in a graphical en-
vironment (e.g., a Unix system running X windows, or under MS
Windows or Mac OS), Emacs will default to Graphical mode; -d is
mostly for X windows experts doing fancy things. If you’re on a
system that’s not running in Graphical mode (like some big server
machines, or in the console of your Unix desktop), you’ll get Termi-
nal mode by default and won’t need -nw. -nw is mostly needed for
those who are running a Graphical system but want to use Emacs in
external terminals as if it were vim(1).

The -daemon option is one of two ways of starting up the Emacs
Server; see Client / Server for details.

The final group of options are mostly used for testing and debug-
ging your Emacs configuration. -q runs an Emacs without loading
your Init File or Customizations. It can be handy for a quick check
of whether or not some recent Init File tweak you made has broken
something: if the suspected breakage doesn’t occur with -q, the prob-
lem has to be in your Init File. Since Desktop Save Mode has to be
enabled in your Init File, -q implies --no-desktop, which tells Emacs
not to load any saved Desktop; see The Desktop.

A certain happy category of bug that can occur in your Init File
causes an explicit error each time you start Emacs. I call this a “happy”
bug because it’s the easiest kind of Init File bug to detect and fix! It
can be hard to tell from the startup error where it is in your Init File,
so just restart Emacs with --debug-init and Emacs will jump into
the Elisp debugger when the error occurs, and you’ll be able to tell
exactly where the buggy code is.243 243 Admittedly this may take a little

familiarity with Elisp and the debugger.-Q is a more extreme version of -q that also doesn’t load any
system-wide init file or Elisp244, nor any X window system resources. 244 Such system-wide customizations

probably don’t exist on single-user
machines.

This is the option to use if you think you’ve found a bug in Emacs:

use gnu emacs the plain text computing environment 291

replicating the suspected bug under -Q makes it very unlikely to be
your fault; see Updates and Bugs.

Scripting Options

What does it mean to “script Emacs” when the whole idea of the Lisp
Machine is to do everything inside Emacs with a real programming
language, Emacs Lisp?

Well, sometimes we have to exist briefly in the world outside of
Emacs, and use Emacs as if it were a tool like AWK or sed(1); after
all, Elisp is a much more powerful programming language than ei-
ther of those. Additionally, you may want to automate some of your
Emacs tasks via a build automation tool like make(1); I do that to
automate the building of this book; see the Colophon. Table 33 lists
some of the options useful for this sort of thing. These options take
effect in the order given, which can be significant. -batch puts Emacs

Option Long Option Action
-batch --batch run in batch mode
-l FILE --load=FILE Load an elisp file
-L DIR --directory=DIR add DIR to load-path

-f FUNC --funcall=FUNC call function named FUNC (with no parameters)
--eval=EXPR evaluate elisp expression
--script FILE run Elisp from FILE in batch mode
--kill exit Emacs unconditionally

Table 33: Command-Line Options for
Scripting

into batch mode, which means it won’t fire up any sort of interactive
display: it will just process the following command line options, and
then exit. It implies -q and is usually used with some combination of
-l, -f, or --eval.

The --eval option evaluates an arbitrary Elisp expression. This
example is a homemade variation on the --version option:

emacs -batch --eval '(message "%s" (emacs-version))'

Most Emacs functions aren’t designed for command-line use,
though: they use Buffers rather than simply printing text to the stan-
dard output. But it’s easy to write Elisp functions suitable for the
command-line: you might collect some in a file that you can load
with -l and then invoke a function in it with -f. But if you’re going
this far, you might as well write a proper Elisp script, for which the
--script option is handy. Here’s a dumb Emacs script that counts
words in the files named on the command line:

https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/Sed
https://en.wikipedia.org/wiki/Make_(software)

292 keith waclena

#!/usr/bin/emacs --script

(dolist (file argv)

(with-temp-buffer

(insert-file-contents file)

(message "%s: %s words" file (count-words (point-min) (point-max)))))

Part II

ADDITIONAL TOPICS

Completion at Point

Up to now, when we’ve talked about completion we’ve been talking
about it in the Minibuffer. But we can also do completion in any
buffer, at Point. This might be familiar from the way IDEs complete
keywords and symbols for various programming languages, and
Emacs Major Modes for programming languages do this too; see
Pop-up Menu Completion. But Emacs also does this for ordinary text
in any buffer, and it’s an amazing feature, called dynamic abbreviation
expansion or Dabbrev for short245. 245 This feature dates back to at least

1998.

Dynamic Abbrevs

As you begin typing a longish word that you know or just suspect
you’ve typed before, hit M-/ (dabbrev-expand) after the first few
characters and the word will complete (or expand) in place. For
example, I just typed “char” and M-/ expanded it to characters —
exactly what I wanted.

If that wasn’t the word I wanted, I would just have immediately
hit M-/ again, and it would have changed the completion to another
word starting with “char”: in my case, one of character, charts, or
charlie. Why? Because those are all the words that start with “char”
that I’ve used in this book (up to this point). More M-/’s would cycle
through all the words that match; I just stop when I get to the one I
want.

The completion candidates are selected from the preceding words
in the buffer, sorted so that the first one offered is the nearest preceding
matching word; the next would be the second-nearest, and so on.

If I keep cycling after rejecting the match that’s closest to the be-
ginning of the buffer, or if there’s no matching preceding word at
all, then candidates will be offered that are ahead of me in the buffer
(again in the order of closest to farthest).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic-Abbrevs

296 keith waclena

Suppose my buffer contains just this one line; I’ve just typed
“com” and Point is indicated by |:

completely completeness completer com| completes completest completing completion

What is the sequence of completions offered up by a repeated series
of M-/’s?

The first completion offered is completer, followed by completeness
and completely. We’ve hit the beginning of the buffer, so the next
M-/ would offer completes followed by completest, completing, and
completion.

What happens if, having rejected the last match in the buffer,
we hit yet another M-/? Aha! In that case, M-/ proceeds to look for
matches in other buffers! This almost makes it seem like M-/ can read
your mind, and the effect and usefulness of this increases the more
buffers you have.

By default, M-/ will only examine other buffers that have the same
Major Mode, so that if you’re editing poetry in latex-mode, say,
it won’t offer you the names of variables and functions from your
buffers full of Elisp code. But if these same-mode buffers don’t have
any candidates, it will then consider all types of buffers.

You can fine-tune this to make it behave exactly the way you like
via M-x customize-group RET dabbrev; see “Dynamic” in the Emacs
manual.

The tricky part of Dabbrevs is, how many characters do you type
before hitting M-/? If you type too few, you could get so many can-
didates that it might take you ten times as long to cycle to the one
you want as it would to just retype the word. But even one character
could be okay if the word you want is long and you just typed it a
line or so ago. If you don’t seem to be getting what you want after a
few tries, just undo and either type the whole thing, or try C-M-/.

Once you get used to M-/, you’ll develop a sort of automatic ability
to know when to use it, and it will both dramatically speed up your
typing, and reduce the number of typos you enter.

You can also complete a sequence of words. Suppose you’re writ-
ing about your favorite Czech composer and need to type his name
again. You type “Le” and then M-/ completes “Leoš”; now imme-
diately type SPC M-/ and his last name, “Janáček” appears (this is
assuming that you have his full name, “Leoš Janáček”, somewhere
in your Emacs). You can keep typing SPC M-/ to add more words: in
general, you can complete an n-word sequence, possibly containing
some very long words, in about n × 2 keystrokes via a long sequence
of SPC M-/’s, though frankly I’ve probably never used this technique
for more than two or three words.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic

use gnu emacs the plain text computing environment 297

Dabbrevs via the Minibuffer

There’s another command to do completion at Point sort of indirectly,
via your preferred completion framework. (I would say this is not
worth using unless you’ve set up an INF like Vertico or Ivy, or are
happy using the mouse.)

Type a partial word but this time invoke C-M-/ (dabbrev-completion).
Instead of instant completion at Point with the first candidate, and
the need to cycle through them, you’ll be presented with a complete
list of candidates using whatever interface your INF uses (Ivy will
use a pop-up menu, Selectrum the Minibuffer).

I don’t use this as often as M-/ but it’s sometimes handy.

Hippie Expand

If Dabbrev isn’t fancy enough for you, you can use Hippie Expand,
which is like Dabbrev on steroids. Hippie works exactly like M-/

(dabbrev-expand), except it chooses from a much wider range of
sources of candidates. One of the sources is simply dabbrev-expand

itself, but it can also expand filenames, entire lines, parenthesized
lists, kills from the kill ring, etc. You can customize which sources
you want to use and in what order. Most people that use Hippie just
bind it to M-/ in place of dabbrev-expand, but you can use a differ-
ent binding in order to have access to both. (Hippie can’t expand
sequences of words the way Dabbrev can.)

The only problem with Hippie Expand is that there are so many
candidates it can offer, what you get can seem like a crap shoot.
Really, I think it would be more useful if it offered completions the
way dabbrev-completion does (implementing that would be a fun
project).

But it’s quite amazing, and I bind it to M-/ to replace dabbrev-

expand; try it and see what you think!

Pop-up Menu Completion

This form of completion-at-Point is primarily for completing sym-
bols—e.g., the names of variables, functions, and the like—in pro-
gramming language modes, though it’s more general than that.
There are two main frameworks to choose from, and both need to
be installed from the Package Manager: Company and Corfu.246 246 There’s also the older auto-complete

framework, which has 46 backends, but
auto-complete is old and buggy, and I
can’t recommend it.

Candidates for completion can come from many sources, some built-
in and most from optional back-ends, so that besides symbols for a
programming language, you can complete email addresses, dictio-
nary words, and Unicode math symbols and emojis by name, among
others.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Dynamic-Abbrevs
http://company-mode.github.io/
https://github.com/minad/corfu

298 keith waclena

Corfu is modern, clean, and “standards compliant”, meaning it
uses the official Emacs APIs to get its completion candidates, whereas
Company instead uses its own backends—but then, there are 74 of
them in the Package Manager. One disadvantage of Corfu is that it
only works in a graphical-mode Emacs.

Both work roughly the same way: as you type the name of a sym-
bol, a menu of completions pops up at Point, either automatically
or upon a keystoke, as you prefer; you scroll to the completion you
want (with TAB or some other key), and hit RET to accept and expand
it at Point. For some symbols, a one-line description will appear in
the Minibuffer. You can see from Figure 37 and Figure 38 that they
look similar: here I’m in Emacs Lisp Mode and have started typing
the name of function: at the point at which I’d typed “with-s” and
paused for a fraction of a second, I get the menu.

Figure 37: company-mode in an Emacs
Lisp buffer

Figure 38: corfu-mode in an Emacs Lisp
buffer

In my opinion, popup-menu completion doesn’t really do too
much for you that Minibuffer completion doesn’t—except for auto-
matically insinuating itself as you type, if you choose that mode of
activation—assuming you’re using a good Incremental Narrowing
Framework, but your mileage may vary. Without popup completion,
you can just invoke M-TAB (complete-symbol) (which is the same as
C-M-i) and complete the symbol in the Minibuffer; see Figure 39.

Since you get to use all the narrowing features of your preferred
Minibuffer completion framework, I prefer plain old complete-

use gnu emacs the plain text computing environment 299

Figure 39: complete-symbol in an
Emacs Lisp buffer

symbol to popup completion.
If you want to try popup completion, I guess I would recommend

Company; just add this snippet to your Init File:

(unless (package-installed-p 'company)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'company)))

(add-hook 'prog-mode-hook (lambda () (with-demoted-errors "%s" (company-mode))))

Registers

When you’re working in Emacs, you might save a lengthy chunk of
text in the Kill Ring so that you can yank it back in several different
places with a simple C-y (yank). The Kill Ring can hold many dis-
tinct chunks, but they’re all anonymous and get pushed deeper into
the Ring with each new thing you kill (and if you kill enough text,
the oldest items will disappear from the Kill Ring). It would be nice
to be able to give certain chunks of text names so that you can easily
remember how to access each of them.

Almost every programming language has the notion of a named
variable that you can set to some value for convenient reuse, and you
could use Emacs Lisp variables for this purpose, but Elisp is verbose
and you need to understand the subtleties of the language to use it.

So Emacs offers Registers: special purpose named variables that
can hold not just text, but a variety of things that you might want to
hang on to and eventually get back. The name of a Register is limited
to a single character: any ASCII character except for * or C-d (which
have a special interpretation). Most people stick to letters (Register a
is different from Register A) and digits. (See below for naming tips.)

For each type of thing you can store, there’s a command to set the
content of the Register, and a command to get the content. There are
only two getters: C-x r i (insert-register) serves for Register
types whose content gets inserted in a Buffer, and C-x r j (jump-
to-register) serves for those types that hold something that you in
some sense jump to.

Type Set Get Contents
Text C-x r s C-x r i an arbitrary blob of text
Number C-x r n C-x r i a number
Rectangle C-x r r C-x r i a rectangle
Position C-x r SPC C-x r j location of Point in this Buffer
Filename C-x r C-f C-x r j a filename
Window Config C-x r w C-x r j Windows layout of the current Frame
Frame Config C-x r f C-x r j the layout of all your Frames
Keyboard Macro C-x C-k x C-x r j the most recent Keyboard Macro

Table 34: Register Commands and
Types

https://www.gnu.org/software/emacs/manual/html_node/emacs/Yanking
https://www.gnu.org/software/emacs/manual/html_node/emacs/Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Registers

302 keith waclena

Register Preview and Contents

Whenever a Register command prompts you for a Register name, it
displays a transient Buffer that contains a preview of the contents of
all defined Registers, as an aide memoire. You can see this preview247 247 In a non-transient Buffer.

at any time with M-x list-registers. Because a Register can con-
tain a huge amount of text, the content can be truncated in these
previews. If you want to see the entirety of a Register, use M-x view-

register.
Registers are a global data structure (not Buffer Local), so that they

can be used to move things from one Buffer to another.

Text in Registers

The set command for text is C-x r s (copy-to-register) or its alias
C-x r x. It prompts you for a Register name and then stores the
text between Point and Mark (i.e., the Region) in that Register. With
a prefix argument, it deletes the text from the Buffer after storing
it (you can think of this as moving the text from the Buffer into the
Register).

The get command for text is C-x r i (insert-register) or its
alias C-x r g; it inserts the value into the Buffer at Point.

You can append or prepend text to a Register with M-x append-to-

register and M-x prepend-to-register; see “Text Registers” in the
Emacs manual.

Numbers in Registers

There is a special set command for numbers because you can use
a proper number in a Register as a counter; C-x r + (increment-
register) will add 1 to the current value of the Register (or some
other increment, if given as a prefix argument). This can be useful
for Keyboard Macros in which you need to count more than the one
thing that the built-in Macro Counter can count.

Rectangles in Registers

C-x r r (copy-rectangle-to-register) saves a rectangle to a Regis-
ter, and C-x r g inserts it into a Buffer. See Rectangles for details.

Buffer Positions in Registers

You can store the position of Point in the current Buffer in a Reg-
ister, with C-x r SPC (point-to-register), which has the aliases

https://www.gnu.org/software/emacs/manual/html_node/emacs/Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Number-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Number-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangle-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Registers

use gnu emacs the plain text computing environment 303

C-x r C-SPC and C-x r C-@. The get command for positions is
C-x r j (jump-to-register), which takes you directly to that saved
location.

Filenames in Registers

You can also store a filename in a register, in which case C-x r j will
actually do a find-file for you (if the file is already in your Emacs,
it will jump to its Buffer). But strangely, there’s no set command to
store a filename in a Register248: the Manual says to use Elisp. So I’ve 248 You can store a filename as a string

with C-x r s but that counts as text to
be inserted later, not as a filename to be
loaded.

defined the missing function; I put it on C-x r C-f.

(defun kw-filename-to-register (filename register)
"Store a filename in a register.

Interactively, if a prefix arg, prompt for FILENAME. With no
prefix arg, use `ffap-file-at-point' to get the filename at point; if
that fails, use the buffer file name; if there is none, prompt for the
filename. Reads the REGISTER using ‘register-read-with-preview’."

(interactive
(list
(setq filename

(if current-prefix-arg
(read-file-name "Filename: ")

(or
(progn

(require 'ffap)
(ffap-file-at-point))

(buffer-file-name)
(read-file-name "Filename: "))))

(register-read-with-preview
(format "Filename %s to register: " filename))))

(set-register register `(file . ,filename)))

(global-set-key (kbd "C-x r C-f") 'kw-filename-to-register)

But if the idea of giving short names to a variety of files that you
visit frequently seems appealing, you should probably check out
Bookmarks instead.

Window and Frame Configurations in Registers

As discussed in Window Configurations, C-x r w (window-configuration-
to-register) will store your current Frame’s Window Configuration
in a Register, and C-x r f (frameset-to-register) will save your
Frame Configuration (i.e., all your Windows in all your Frames). In
both cases, C-x r j will restore it.

Keyboard Macros in Registers

You can save the most recently defined Keyboard Macro in a Register
with C-x C-k x (kmacro-to-register) and invoke it with C-x r j.
Why would you do this when you can assign Macros to keys in the
C-x C-k keymap with C-x C-k b (kmacro-bind-to-key)? The main
advantage is that desktop-save-mode will save any Macros in Reg-
isters for future Emacs sessions without any extra work on your

https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Configuration-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Configuration-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Configuration-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Keyboard-Macro-Registers
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Keyboard-Macro

304 keith waclena

part, while preserving C-x C-k b bindings requires the extra steps
described in Naming and Binding Your Macros.

Saving Your Registers

You can automatically save the contents of all your Registers for
future sessions with the highly recommended Desktop Save Mode.

I have many Registers that have each retained their contents for
years and I use them regularly; they all have mnemonic alphabetic
names. But I regularly also need transient Registers that I definitely
don’t care about maintaining forever. I need short-term mnemonic
names but don’t want to accidentally clobber one of my “permanent”
Registers. What to do?

My solution is to use control characters for the names. So for ex-
ample, Register k contains:

call_kb(key="",cmd="")

(a snippet of Org Mode code that I use in this book all the time), so
when I temporarily need a Register to hold a blob of text about, say,
koalas, I might use C-k as the Register name.

Rectangles

Programmers and system administrators often need to edit files of
rigidly structured text, organized at least partially into columns. It
can be very useful to be able to add, delete, or modify a rectangular
chunk of such text, and indeed Emacs has a suite of commands to do
so. But how do you indicate such a chunk?

A Rectangle is just a special interpretation of the usual Region.
Normally, the Region is the linear sequence of characters (counting
newlines as ordinary characters) between Point and Mark, as in Fig-
ure 40.

Figure 40: A Linear Region

But the Rectangle commands interpret the exact same Region
rectangularly, as in Figure 41.

Figure 41: A Rectangular Region

Once we’ve defined a Rectangle we can easily do things to it, like
say blank it out with one keystroke (Figure 42).

Figure 42: A Rectangular Region,
Blanked

To work with a Rectangular Region, just set the Mark at any of
the four potential corners of the Rectangle, then move Point to the

306 keith waclena

diagonally opposite corner. At this moment, the ordinary linear Region
has been defined and will look (if you activate it with the usual
C-x C-x (exchange-point-and-mark)) like Figure 40. To switch the
interpretation to rectangular, do C-x SPC (rectangle-mark-mode),
and you’ll see something like Figure 41. (Alternately, you can sweep
out the Rectangular Region with C-M-mouse-1 (mouse-drag-region-
rectangle).)

With the Rectangular Region activated, Point is fixed to one of
the four corners. You can grow or shrink the Rectangle in any of the
four cardinal directions with ordinary motion commands (such as
C-f (forward-char), M-b (backward-word), <down> (next-line), or
whatever). Whether the Rectangle grows or shrinks depends on the
direction of the motion relative to the location of Point.

You can cycle Point around the corners with repeated invoca-
tions of C-x C-x, which, when the Rectangular Region is activated,
is rectangle-exchange-point-and-mark. If Point is at the upper- or
lower-right corner, rightward motion will grow the Rectangle to the
right, and leftward motion will shrink it to the left, for example.

In addition to the motion commands, commands that kill or copy
the Region, like C-w (kill-region) and M-w (kill-ring-save), will
operate on the Rectangle, and so will commands that modify the text
in the Region, like C-x C-u (upcase-region).

To deactivate the Rectangular Region, just use C-g (keyboard-
quit).

Inactive Rectangular Regions

The motion and Region-manipulating commands described above
only have their special Rectangular interpretation when the Rectan-
gular Region is activated. But as you know, if the Mark is set in your
Buffer, there is a Region present, even it isn’t activated. The same is
true of the Rectangular Region: if there’s a Mark, there’s an implied
Rectangle, and there is a set of explicit Rectangle commands (see Ta-
ble 35) that will operate on it whether you activate it with C-x SPC or
not (you might prefer to activate it just so the precise extent of your
Rectangle is more obvious).

C-x r c changes every character in the Rectangle to a space,
“clearing” it (as in Figure 42). C-x r o on the other hand opens up
a new rectangular space where you’ve marked your Rectangle, but
preserves the original text of the Rectangle by shifting it to the right
(that includes all the text to the right of the original Rectangle too).

Deleting or killing the Rectangle actually eliminates all the char-
acters contained in the Rectangle, rather than converting them to
spaces as C-x r c does, thus squashing the Rectangle out of existence

https://www.gnu.org/software/emacs/manual/html_node/emacs/Setting-Mark
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangles
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Words
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Kill-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Kill-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting

use gnu emacs the plain text computing environment 307

Key Action
C-x r c Clear rectangle (overwrite with spaces)
C-x r d Delete rectangle
C-x r k Kill rectangle
C-x r y Yank previously killed rectangle
C-x r o Open rectangle (shift rectangle right)
C-x r t replace Text of rectangle
C-x r N Number rectangle’s lines
C-x r r copy rectangle to Register

Table 35: Explicit Rectangle Commands

and shifting all the text to right of it leftward. If you use C-x r d

(delete-rectangle), the text of the Rectangle is gone forever249, but 249 Unless of course you Undo. . .

if you use C-x r k (kill-rectangle) you can later yank the Rectan-
gle back with C-x r y (yank-rectangle).

C-x r t is probably the Rectangle command I use the most: it
replaces the text of the Rectangle with new text: you’re prompted for
a new single line of text, and that line replaces the text of each of the
Rectangle’s lines. Consider this list of some of my favorite drummers:

+ Chris Cutler

+ Max Roach

+ Tatsuya Yoshida

+ Christian Vander

I can change all the plus signs to bullets by setting a one-character-
wide Rectangle containing the column of pluses, and then executing
C-x r t •.250 The result will be: 250 How do you type that bullet char-

acter? See International Character Set
Support.• Chris Cutler

• Max Roach

• Tatsuya Yoshida

• Christian Vander

The new text doesn’t have to be the exact same width as the Rectan-
gle; if instead I used the string “Drummer” the result would be:

Drummer Chris Cutler

Drummer Max Roach

Drummer Tatsuya Yoshida

Drummer Christian Vander

Old- and New-School Rectangle Commands

The commands in Table 36 were necessary before the invention of the
Rectangular Region in 2014, and of course you can still use them, but
if you’re activating the Rectangular Region via C-x SPC you can use
the easier commands discussed above.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangles
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangles
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangles

308 keith waclena

Key Inactive Rectangular Region Active Rectangular Region
(Old School) (New School)

C-x r k Kill rectangle C-w

C-x r d Delete rectangle (not yankable) C-w (yankable)
C-x r M-w copy rectangle to Kill Ring M-w

C-x r y Yank rectangle C-y

Table 36: Old- and New-School Rectan-
gle Commands

Empty Rectangles

If you set the Mark, and then move point directly downward say four
lines with C-n (next-line), you have created an empty Rectangle with
a width of zero columns which is four lines in height. Such empty
Rectangles are very useful! If you’ve typed in my list of drummers
without any kind of bullet:

Chris Cutler

Max Roach

Tatsuya Yoshida

Christian Vander

then you can add the bullets by defining an empty Rectangle extend-
ing vertically from in front of the “C” of Chris Cutler down to the
“C” of Christian Vander, and then using C-x r t to insert the bullets.

Yanking Rectangles is Subtle

When you yank back a previously killed Rectangle with C-x r y

(yank-rectangle), the lines of the Rectangle are inserted into the
Buffer with Point being the upper-left-hand corner of the inserted
text.

If I have previously killed a 3-line Rectangle consisting of hyphens,
and I position Point right before the space in the first line of this
block of text:

XXXXXXXX XXX

XX

XX

XX

and then I say C-x r y (yank-rectangle), the result might look like
this:

XXXXXXXX----- XXX

XXXXXXXX-----XX

XXXXXXXX-----XX

XX

https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangles
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rectangles

use gnu emacs the plain text computing environment 309

Note how yanking shoves the characters to the right, rather than
replacing any of them. To instead achieve this result:

XXXXXXXX XXX

XX

XX

XX

you would need to first, before yanking, open up three blank lines
(perhaps with C-u 3 C-o (open-line)) and insert eight spaces on the
first of them to position Point where you want it horizontally.

C-o is very handy when yanking Rectangles. Rather than counting
precisely, you can often give it a big numeric argument to open more
lines than you’d need, say, with C-u C-u C-o to get sixteen blank
lines, yank your Rectangle, and then close up the extraneous blank
lines with a couple of C-x C-o (delete-blank-lines)’s.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Blank-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Blank-Lines

Bookmarks

Emacs Bookmarks are a sort of generalization of Filename Registers,
but they come with long names, some additional commands, and a
Major Mode for browsing and maintenance. Most of us have a set of
files, located all over the file system, that we visit on a regular basis:
Bookmarks are the way to manage them, and they automatically
persist across Emacs sessions251. 251 Even without enabling the Desktop.

Bookmarks were probably originally designed as a way to save
your position in a file, just like a physical bookmark does in a physi-
cal book: they let you open up a file at the exact point that you were
last reading (or editing).

But for this aspect of Bookmarks, save-place-mode works better. If
you enable it in your Init File (and I recommend you do), every time
you open any file, Point will be set to the position it had when you
last saved the file.

Init File
(save-place-mode 1) ; come back to where we were in that file

The main Bookmark commands share the C-x r prefix with the
Register and Rectangle commands. and basic usage is quite straight-
forward:

Key Action
C-x r m set or update a bookMark NAME here
C-x r M set a new bookMark NAME
C-x r b jump to Bookmark NAME
C-x r l pop up List of all bookmarks
M-x bookmark-insert insert contents of bookmarked file
M-x bookmark-insert-location insert filename of bookmarked file

Table 37: Bookmark Commands

When you set a Bookmark with C-x r m you’ll be prompted for a
name, which is an arbitrary string (not just a single character like a
Register); typing C-w’s at the prompt will slurp up words from Point
to use as the name. The default name will be the Buffer’s filename252. 252 Or its Bookmark name, if you’ve

already bookmarked this file with a
name that’s distinct from the filename.

You can only bookmark files or directories (C-x r m will work in a
Dired Buffer), so you’ll get an error if you’re in a Buffer that’s not
visiting a file. Note that you can bookmark remote Tramp files and

312 keith waclena

directories: extremely useful, and there’s special support for book-
marking chapters of Info documentation.

Each Bookmark records not only the file, but the current location
of Point. You can have several Bookmarks pointing to different loca-
tions in the same file, but you’ll want to give them distinct names so
you can keep them straight.

If you have a Bookmark, and you invoke C-x r m at a different
location in the same file, Emacs will update the Bookmark to reflect
the new location of Point. With a prefix arg C-u C-x r m will up-
date the Bookmark but rather than discarding the old location, will
shadow it: when you delete the Bookmark, the previous location will
be restored. Effectively, with C-u you can push any number of new
locations on a stack and pop them off later.253 253 I’ve never used this feature; I think it

would be more useful with a better user
interface in the Bookmarks menu.

I say that a Bookmark records the value of Point, but actually it
also stores some of the file’s text before and after Point, so that if
the file changes slightly, Emacs can restore your location with more
accuracy.

C-x r M is just like its lowercase sibling, except that it will refuse
to update an existing Bookmark.

Jumping to a Bookmark is as easy as C-x r b: just type the name
and go. With a good Completion enhancement like Marginalia you’ll
get some useful extra context.

With M-x bookmark-insert, you can also insert the complete con-
tents of a Bookmarked file into the current Buffer at Point; this is like
C-x i (insert-file) except you use the Bookmark name rather than

the complete filename. M-x bookmark-insert-location inserts just
the filename of the named Bookmark.

Bookmark Maintenance with the Bookmark Menu

C-x r l (bookmark-bmenu-list) pops up the Bookmark Menu Buffer,
a two-column listing of all your Bookmarks; it might look something
like this:

% Bookmark File

Inbox.org ~/notes/syncthing/Inbox.org

Web Space /ssh:example.com:/home/login/web

backdrops ~/images/backdrops/DB

books ~/books/2022.db

This Buffer works much like Dired or Buffer Menu, so you can prob-
ably start using it without any explanation: hit RET on a line to jump
to that Bookmark, d to flag a Bookmark for deletion, and x to exe-
cute your deletions.254 Here’s a subset of the truly Bookmark-specific 254 I guess I just explained it there,

didn’t I?commands; as always, you can use C-h m (describe-mode) to see

https://www.gnu.org/software/emacs/manual/html_node/emacs/Bookmarks
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops
https://www.gnu.org/software/emacs/manual/html_node/emacs/Bookmarks
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help

use gnu emacs the plain text computing environment 313

the expected Special Mode commands for scrolling, opening your
Bookmarks in the usual Window and Frame variants, marking lines
to open several in one go, limiting to matching Bookmark names, and
the like.

Key Action
r Rename this bookmark (same file, new name)
R Relocate this bookmark (same name, new file)
k Kill this bookmark immediately
d flag (with D) this bookmark to be Deleted
x eXecute deletions of bookmarks marked with d

a show the Annotation
A show All annotations
e Edit the annotation

Table 38: Bookmark Menu Commands

Bookmark Annotations

Bookmarks can have simple annotations attached to them; Bookmarks
with annotations are marked with an asterisk (*) at the left. From the
Bookmark Menu, use the a command to display this line’s annotation
in a pop-up Window (A will show all of them). To add or edit an
annotation, use the e command.

Since a Bookmark is specific to a particular location in a file, you
could theoretically annotate many lines by creating many Bookmarks,
but practically speaking, the Bookmark Menu interface isn’t really up
to this task. There are third-party packages that handle this properly.

Abbreviations

Most forms of completion are about making it easy for you to choose
from a set of candidates, but Emacs also has a system known as
Abbrevs in which a short, user-defined abbreviation, at the moment
you type it, automatically expands to something (usually) much
longer.

The great thing about Abbrevs is that they happen instantaneously
without your having to type so much as a single extra keystroke to
invoke a completion command: they just magically expand as you’re
typing! Suppose you’re writing about Transylvanian cuisine and find
yourself typing “Székelykáposzta” a lot. You might like the Abbrev
“sk” to expand to that word, properly capitalized, so that when you
type “Cooking sk is easy”, the Abbrev expands right after you type
“sk”, the result being “Cooking Székelykáposzta is easy”.

Of course there’s a flip-side. Unlike completion patterns, you
have to define the Abbrevs you want to use, and, since they expand
magically, they might occasionally expand when you don’t want
them to.

Let’s try it. First, in some writable Buffer, you need to enable the
Minor Mode abbrev-mode with M-x abbrev-mode. This is a Buffer
Local Minor Mode, so it will only apply to the current Buffer.

Next, you have to define yourself an Abbrev. You might decide to
do this after you’ve typed some long or tricky-to-spell word enough
times that you notice you’re sick of doing it, so the expansion is right
there in the buffer, to the left of Point. Before typing any further, give
the expansion an abbreviation with C-x a l (add-mode-abbrev). This
command defines an Abbrev for the word immediately before Point.
It prompts for the abbreviation:

Mode abbrev for "Székelykáposzta": sk

That’s it! Now “sk” will expand to Székelykáposzta in this Buffer.
Actually, as the name add-mode-abbrev suggests, it will expand

in all buffers that are in the same Major Mode and in which you’ve
turned on abbrev-mode. If this buffer is in Org Mode, then “sk” is
“Székelykáposzta” in all your Org Mode buffers, until you either

https://www.gnu.org/software/emacs/manual/html_node/emacs/Abbrev-Concepts
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs

316 keith waclena

change your mind and undefine it or until you end your Emacs ses-
sion.255 255 But see below for saving your Ab-

brevs across sessions.You can also define global abbrevs that work everywhere abbrev-

mode is enabled, regardless of the Major Mode, with C-x a g (add-
global-abbrev).

The mnemonics for these keystrokes, then, are:

C-x a l Abbrev, Local (to Mode)

C-x a g Abbrev, Global

Both C-x a l and C-x a g take, as the expansion text, the text
from Point backwards to the beginning of the previous word. This
means that if you type the expansion “foo ”—note the space after
the word and before Point—the expansion will include the space,
and also any trailing punctuation; this will be clear from the prompt.
For maximum flexibility you typically don’t want trailing spaces or
punctuation in your expansion text.

Multi-Word Expansions

What do you do if you want your expansion text to include multiple
words? I might want an Abbrev for the name of my workplace, The
University of Chicago, for example. With Point after Chicago, I can
use a numeric argument of 4 like so: C-u 4 C-x a l. I could also put
the Region around the expansion text and use a numeric argument
of zero: C-u 0 C-x a l256 These numeric arguments work identically 256 The Active Region isn’t supported, I

suspect because the Abbrev commands
long predate it.

for the global command C-x a g.
You can also define Abbrevs backwards, by typing the Abbrev

in the buffer and then using either C-x a i l (inverse-add-mode-
abbrev) or C-x a i g (inverse-add-global-abbrev). This way you
never have to count the words in your expansion.

All these defining keystrokes seem to be designed for people who
are constantly adding Abbrevs on the fly as they type at speed,
but for me this only happens very occasionally. So I think the eas-
iest way to define an Abbrev is with M-x define-mode-abbrev and
M-x define-global-abbrev. These commands prompt you for both
the expansion and the abbreviation in the Minibuffer, so there’s no
counting.

Abbrevs and Case

The case of the letters you use in typing an Abbrev control the case
of the letters in the expansion in a manner analogous to the way
case works in Isearch. If you’ve defined “wa” as an abbreviation

https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Defining-Abbrevs

use gnu emacs the plain text computing environment 317

for “wallabies”, typing “Wa” instead of just “wa” will expand to
“Wallabies” and “WA” will expand to “WALLABIES”.

Unexpanding Unhappy Expansions

What do you do if an Abbrev expands when you don’t want it to?
First, you should choose unlikely abbreviations to minimize this
problem: if you write primarily in English, maybe don’t chose “the”
as your abbreviation for “Transportable Helicopter Enclosure”. But
there are certain circumstances when even the unlikeliest of Abbrevs
will expand when you don’t want them to.257 257 Like, when you’re writing about “sk”

being an abbreviation for Székelyká-
poszta, for example. . .

When exactly do Abbrevs expand? When you’ve enabled abbrev-

mode, Abbrevs are checked for every time you type a non-word-
constituent character, that is, any character that the current Major
Mode doesn’t consider to be a part of words. Typically that’s whites-
pace and punctuation. So when you type “The End.”, as soon as you
type the space, abbrev-mode checks the preceding word (“The”) to
see if it’s an Abbrev, and if so it expands it. Then when you type the
period after “End”, it checks to see if “end” is an abbrev, and so on.

This means that you might get an unwanted expansion. This is
especially common when you’re briefly typing in a domain specific
language in your otherwise straight natural language prose. Sup-
pose I need to type a URL in my Transylvanian cooking text, and
the URL includes an innocent “sk” between punctuation characters,
like https://example.com/d7/sk/45/d0/ — I would end up with
https://example.com/d7/Székelykáposzta/45/d0/! This can also
come up with snippets of HTML, say, or examples from some pro-
gramming language.

There are two solutions. One is, as soon as you see the unwanted
expansion, Undo it. This will lose you the punctuation character that
caused the expansion — a slash, above — so then add the slash back
by quoting it with C-q (quoted-insert) i.e. C-q /. quoted-insert
prevents abbrev-mode from expanding the Abbrev. If you’re thinking
ahead you can obviously skip the Undo part.

Another solution is to use M-x unexpand-abbrev, which does just
what it says; you’ll still need to use quoted-insert to get the punctu-
ation back.

A real downside is that you might be typing quickly and not notice
the expansion! Now you have an error: this is the same reason your
SMS text messages are full of embarrassing typos, and is the reason
I don’t really use Abbrevs very much. I prefer Dynamic Abbrevs: if
I’m typing Székelykáposzta often enough, it’ll be sure to complete
easily with M-/.

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://www.gnu.org/software/emacs/manual/html_node/emacs/Inserting-Text
https://www.gnu.org/software/emacs/manual/html_node/emacs/Expanding-Abbrevs

318 keith waclena

Prefixed Abbrevs

The inverse of unwanted expansions is wanted expansions that don’t
happen. Suppose you’ve defined “bac” as an Abbrev for “bacterial”,
and you expect that when you type “antibac ” it will expand to “an-
tibacterial”. But of course it doesn’t, because the word preceding the
space isn’t “bac”.

You can solve this with M-’ (abbrev-prefix-mark). Just type
“anti” M-’ “bac” and then space; when you type M-’ Emacs will
insert a hyphen, but this is a magic hyphen, and when you hit the
space, “anti-bac” will expand to “antibacterial” (and the hyphen
disappears).

Turning abbrev-mode on in Your Init File

Unlike many modern Minor Modes, abbrev-mode doesn’t have a
global-abbrev-mode version, so if you want it on in all the Major
Modes you use, you’ll have to enumerate them in your Init File. The
easiest way is probably to use one or both of these two hooks:

(add-hook 'text-mode-hook 'abbrev-mode)

(add-hook 'prog-mode-hook 'abbrev-mode)

Most texty Major Modes inherit from text-mode, just as most pro-
gramming language modes inherit from prog-mode. If you don’t want
it everywhere, just add it to the hook for any Modes you want; see
Hooks.

Listing and Editing Abbrevs

You can see all the Abbrevs that you’ve defined with M-x list-

abbrevs. They’re grouped by Major Mode and will include a spe-
cial entry for the Global Abbrev Table. Most definition lines will look
like:

"sk" 32 "Székelykáposzta"

You can edit any of these lines to tweak or add new Abbrevs. The
number in the middle is a count of how many times you’ve used that
Abbrev, which can be helpful if you decide to clean some of them
up. You can also delete lines to delete the definition. After making
any such changes, C-c C-c (edit-abbrevs-redefine) will update
Emacs’s state to reflect your changes. C-x C-s will save the buffer
in a file that Emacs will automatically load each time you start a
session.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Expanding-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Editing-Abbrevs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Editing-Abbrevs

use gnu emacs the plain text computing environment 319

Saving Your Abbrevs

If you’ve defined any Abbrevs in a session, Emacs will ask if you
want to save them when you run C-x s (save-some-buffers), or
when you exit. When prompted for a filename to save them in, the
default will be a file in your Emacs Directory; Abbrevs in this file will
be loaded and defined for you when you start up Emacs.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands

Recursive Edit

One of the more unusual Emacs capabilities is what we call Recursive
Edit; it refers to your ability to do full-on Emacs editing while you’re
in the middle of doing Emacs editing. What?

Suppose you’re doing a Query Replace, which is a very structured
sort of editing: you’re stepping from one match to the next and at
each stage, answering a yes-or-no-question (replace this one, or not).
It’s possible that in the middle of this, you might need to look at
some other part of the buffer, or some other Buffer entirely, in order
to decide between yes or no for one of the matches. You could quit
the Query Replace, and then restart it, but the normal Emacs thing to
do is enter a Recursive Edit—which, in a Query Replace, you can do
by using C-r.

The Recursive Edit is a way to leave the Query Replace frozen
where you left it. You can then do any Emacs editing you like: you’re
no longer just answering yes or no. You can scroll the Buffer, move to
a different location, make a quick edit, change Buffers, send an email,
or play a game of Tetris. Take as much time as you like, even days if
you want (as long as you don’t exit Emacs).

It will seem as if you’ve quit out of the Query Replace, but re-
ally it’s just waiting patiently for you to end your Recursive Edit,
at which point your windows will be restored to exactly what they
looked like when you hit C-r, and it will be waiting for you to an-
swer the exact same yes or no question it was asking you before your
excursion.

The word recursion implies self-reference and nesting something
within itself, as in the recursive acronym GNU, which stands for
“GNU’s not Unix!”258. This is exactly what’s happening with a Re- 258 : The “GNU” stands for “GNU’s not

Unix!”.cursive Edit: in order to let you do an arbitrary something in the
middle of something else, rather then implementing a half-assed
temporary-escape feature, Emacs does the simplest possible thing: it
calls itself recursively to do the job. This simplest possible thing also
happens to be the most powerful thing.

The only way you can tell you’re in a Recursive Edit is by peek-
ing at the Mode Line. The section which displays Major and Minor

https://en.wikipedia.org/wiki/Recursion

322 keith waclena

Modes with parentheses will be wrapped in square brackets, like
this:

U:@--- *scratch* All L1 Hg:94daf [(Lisp Interaction ElDoc)]

when you exit the Recursive Edit, the brackets will go away.
Since you can do anything while you’re in a Recursive Edit, that

includes entering another Recursive Edit! If you do that, you’ll see
another level of brackets in the Mode Line. The number of pairs of
brackets indicates how deeply nested you are.

Besides Query Replace, you’ll find special key-bindings for Recur-
sive Edit in other highly-structured Emacs subsystems, like Keyboard
Macros and the Elisp debugger. But because Emacs is very much a
non-modal editor, there’s less call for special uses of this powerful
feature than you might think. If you’re doing file management in
Dired, or are the middle of editing a version control log message,
you can just switch Buffers, do something else, and come back later.
This is even true when you’re being prompted for information, as I
described in The Minibuffer.

You can invoke a Recursive Edit manually whenever you want
with M-x recursive-edit, but I’m hard pressed to think of times
when I’ve wanted to do this.

Exiting a Recursive Edit

I encourage you to try a recursive excursion during your next Query
Replace. But before you do, you need to know how to exit the Recur-
sive Edit! There are three ways:

C-M-c (exit-recursive-edit) exit the innermost Recursive Edit and
continue where you left off (perhaps back in your Query Replace)

C-] (abort-recursive-edit) same as above, but also abort the com-
mand that gave you the Recursive Edit (perhaps your Query Re-
place)

M-x top-level abort all nested levels of Recursive Edit

If you ever happen to notice some square brackets around the
mode information in your Minibuffer, it might be because you acci-
dentally entered a Recursive Edit, or perhaps days ago you intention-
ally did so in a Query Replace but then changed your mind entirely
about it, and simply forgot to exit — you might even have killed the
Buffer in which you were doing the Query Replace! C-] is appropri-
ate in these situations, but C-M-c is the standard procedure.

A forgotten Recursive Edit rarely causes any problems — you
could be working for weeks in one without even noticing — but you
might as well clean them up when you discover them.

https://www.gnu.org/software/emacs/manual/html_node/elisp/Debugger
https://en.wikipedia.org/wiki/Modal_window
https://www.gnu.org/software/emacs/manual/html_node/emacs/Recursive-Edit
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting

Visual Display and Color

Each character or span of characters in a Buffer can have any number
of properties that can be used to change its Face (font, colors, under-
lining, slant, etc), the character set (encoding), directionality (left-
to-right or right-to-left), spacing and line-height, margins, visibility,
modifiability, and the like. Chunks of text of any size can have click-
able actions or an entire menu associated with them and can change
what a keystroke does when the cursor is at a particular location.
Text can be displayed as glyphs (like emojis or icons) or full-blown
images. All of this is done without any modification to the plain
text of the Buffer’s visited file (if any) and so won’t interfere with or
confuse external programs.

These facilities are used to build Emacs applications such as the
Customize facility and Dired, and one generally needs to be an Elisp
programmer to play with them, but here we’ll discuss some of the
user-level commands that enable non-programmers to easily change
the visual properties.

Fonts and Faces

Loosely speaking a computer font (hereafter, just “font”) is a pack-
aging of a particular typeface design (think Helvetica), including
variations in size, weight, slope, and the like. Your operating sys-
tem probably comes with some fonts predefined, and you may have
added many more via your OS package manager. More precisely,
a font is one specific expression of a typeface, a weight, a slant, etc,
such as “Helvetica 14 Bold”. I have 787 fonts installed on my system,
which are all available to Emacs.

A Face is an Emacs concept: a combination of a font with any
of the following additional attributes: Underline, Overline, Strike-
through, Box around text, Inverse-video, Foreground (color), Back-
ground (color), or Stipple.259 259 A Face can also override the font’s

Width, Height, Weight, or Slant.Emacs predefines 150-odd different Faces, and packages can define
and add many more (my Emacs currently has 442). You can see a col-
orful listing of all the currently defined Faces with M-x list-faces-

https://en.wikipedia.org/wiki/Typeface
https://en.wikipedia.org/wiki/Helvetica
https://www.gnu.org/software/emacs/manual/html_node/emacs/Faces
https://www.gnu.org/software/emacs/manual/html_node/emacs/Faces

324 keith waclena

display.

Figure 43: M-x list-faces-display

These Faces are used to present the typically colorful Emacs dis-
play of mode-specific syntax highlighting, hypertext links: really,
everything, because in Emacs, all is text.

You don’t need to worry about specific Faces until you’re unhappy
with one. If some Face in some mode rubs you the wrong way, you
can easily change it; see Customize for more information.

Changing the Default Font

Most Faces are just customized versions of the default font260, and 260 The success font visible in Figure 43

is just the default font in bold with a
bright green foreground color.

the default font is what most of your text will look like. You may
want to change it from the default 10-point monospace font. As a
programmer, I much prefer a monospace (fixed-pitch) font, but I
like a specific one best and specify it in my Init File. You can do this
yourself with something like this:261 261 I use with-demoted-errors so my

Init File will still work even if I haven’t
installed my preferred font (which is
not actually Helvetica).

(with-demoted-errors "%s"

(add-to-list 'default-frame-alist '(font . "Helvetica 12")))

Changing Fonts on the Fly

The default font is Frame-specific; though there’s a default, you can
change the current Frame’s font on the fly with M-x set-frame-font;
you can use Completion to choose amongst all the fonts available on
your system. M-x menu-set-font provides a popup GUI dialog and
changes the font of all your existing and future frames (in the current
Emacs session) in one go.

You can of course customize different fonts for different Major
Modes and the like, and there are a number of third-party packages

https://www.gnu.org/software/emacs/manual/html_node/emacs/Faces
https://www.gnu.org/software/emacs/manual/html_node/emacs/Faces
https://www.gnu.org/software/emacs/manual/html_node/emacs/Faces

use gnu emacs the plain text computing environment 325

for working with fonts as well.

Text Scale: Changing the Font Size

Once you’ve chosen your default font, you probably won’t often feel
the need to change it on the fly, but you may well want to change the
size from time to time. You can increase the font size with C-x C-+

(text-scale-adjust), which immediately embiggens the font by the
factor in text-scale-mode-step (default: 1.2), or decrease the font
size by the same factor with C-x C-- (text-scale-adjust); C-x C-0

(text-scale-adjust) will restore your default font size.
You may have noticed that all these keystrokes are bound to the

same function. That’s because the text-scale-adjust function bases
its behavior on the keystroke that invoked it. Additionally, after it’s
invoked, if any of the next keystrokes in unbroken sequence are 0, +,
or -, ignoring any modifiers, the corresponding action is invoked. In
short, start with any of C-x C-0, C-x C-+, or C-x C-- and then you
can continue tweaking the font size with simple 0, +, or - keystrokes
until you get what you want — terminate this with any key that
doesn’t involve 0, +, or - (C-g (keyboard-quit) is always there for
you).

Since for me, the first adjustment is always to enlarge the font, I
bind text-scale-adjust to the felicitous binding C-+ and start from
there:

Init File
(global-set-key (kbd "C-+") 'text-scale-adjust) ; embiggen font

Themes and Colors

A theme is a named combination of Faces262 that broadly determines 262 Strictly speaking, a Theme can
customize Variables as well as Faces.the overall look of your Emacs, especially the colors. Emacs pre-

defines 16 Themes, and there are at least 306 more in the Package
Manager, and many more on Github and the like.

If you’d like to change your Theme, just call M-x customize-

themes, which will contain lines like:

[] wheatgrass -- High-contrast green/blue/brown faces on a black background.

[] whiteboard -- Face colors similar to markers on a whiteboard.

[] wombat -- Medium-contrast faces with a dark gray background.

Just check the box of the Theme you want and the Theme will be
immediately activated; check another box and it will switch to that
theme; uncheck the box to go back to Theme you were using before
you started. Some Themes are subtle and you might need to see them
in a variety of different types of Buffers to appreciate them. Third-
party Themes you’ve installed from the Package Manager will also

https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Scale
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Scale
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Scale
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Custom-Themes
https://www.gnu.org/software/emacs/manual/html_node/emacs/Custom-Themes
https://www.gnu.org/software/emacs/manual/html_node/emacs/Custom-Themes

326 keith waclena

be listed in this Buffer. After you’ve chosen the one Theme you like,
you can make it your default for future sessions: evaluate C-x C-s

(custom-theme-save) in the Customize Buffer.
Who creates all these Themes? Anybody, including you. If you

want to try your hand at it, run M-x customize-create-theme and
answer “yes” to the question:

Include basic face customizations in this theme? (y or n)

You’ll be taken to a special Customize Buffer where you can choose
all the colors, fonts, and faces you want in your very own Theme,
which you can save, make your default, and even give away to other
Emacs users.

Colors

One of the most important parts of a Theme is its (presumably har-
monious) color choices. On my system, Emacs knows 752 named
colors; you can examine them via M-x list-colors-display (see
Figure 44).

Figure 44: M-x list-colors-display

The Cursor

Every Window has a Point, which is indicated by a cursor. By default,
the cursor is a solid block in the currently selected Window, and a
hollow block in any other visible Windows. But you can change how
the cursor is displayed if you like. Customize the many aspects of the
cursor with M-x customize-group RET cursor. See “Cursor Display”
in the Emacs manual for more information.

By default, the cursor blinks, which drives me crazy; I turn it off in
my Init File:

(blink-cursor-mode 0)

Emphasizing the Cursor’s Line

When I’m reading text with long lines, I sometimes lose my focus as
I scan the lines from left to right; it’s also an issue for me vertically
with very tall windows. To solve this problem, I invoke M-x hl-line-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Creating-Custom-Themes
https://www.gnu.org/software/emacs/manual/html_node/emacs/Colors
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Cursor-Display
https://www.gnu.org/software/emacs/manual/html_node/emacs/Cursor-Display
https://www.gnu.org/software/emacs/manual/html_node/emacs/Cursor-Display

use gnu emacs the plain text computing environment 327

mode, which changes the background of the entire line containing
Point (i.e. the cursor) to make that line stand out. As you move the
Point from line to line, the background emphasis follows along.

I turn this on automatically in many Major Modes that display
lists of things, like package-menu-mode, occur-mode, and dired-mode

via Init File snippets like these:

(add-hook 'occur-mode-hook 'hl-line-mode)

(add-hook 'dired-mode-hook 'hl-line-mode)

(add-hook 'package-menu-mode-hook 'hl-line-mode)

Highlighting Text

By now you’ve noticed how colorful the typical Buffer is. Almost ev-
ery Major Mode does a certain amount of what we call fontification to
apply Faces based on the structure or syntax of the text. This is typi-
cally done by a Minor Mode called font-lock-mode, which is enabled
globally by default. If you’re looking at a colorful Buffer right now,
try saying M-x font-lock-mode and you’ll be stunned to see all the
colors disappear: you’ll be staring at 100% monochrome text! This
is what Emacs used to look like in the 70s. (Quick! Reinvoke that
command to get your colors back!)

Fontification is mostly performed by Major or Minor Modes, so
you have to be an Elisp programmer and Regular Expression wizard
to do it. But there is a small collection of commands that allow you
to fontify your text dynamically: we call this on-the-fly fontification
highlighting.

Hi-Lock Mode

hi-lock-mode lets you highlight text that matches certain patterns,
to make occurrences of those patterns stand out dramatically. As
a programmer, I often use it to highlight the name of a function or
variable in my code so that all the uses jump out at me; you might
also use it to highlight the names of people or things in a document
so that they stand out as you scroll through. It looks rather like the
highlighting of your search term that Incremental Search does, but
the Isearch highlights disappear as soon you terminate your search:
Hi-Lock highlighting sticks around until you turn it off.

In Figure 45, I’ve highlighted all occurrences of the variable node

in pink. All the occurrences in the Buffer are pink, not just the ones
visible in the Window: as I scroll the Buffer, any node I see will be
pink, and if I type new text that contains node, that new node will
immediately become pink as well. In addition, I’ve highlighted a
comment describing a bug in unmissable yellow; all other comments

https://www.gnu.org/software/emacs/manual/html_node/emacs/Cursor-Display
https://www.gnu.org/software/emacs/manual/html_node/emacs/Cursor-Display
https://www.gnu.org/software/emacs/manual/html_node/emacs/Cursor-Display
https://www.gnu.org/software/emacs/manual/html_node/emacs/Font-Lock
https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively

328 keith waclena

Figure 45: Highlighting with M-s h

that start with TODO BUG will also be lit up this way. I consider Hi-
Lock Mode an essential feature and use it all day long.

Note that these highlights don’t modify your text in any way. If
you save your file, they won’t corrupt your program with hidden
codes. On the other hand, if you want them to come back the next
time you edit your file, you have to say so.

The Hi-Lock commands all live on the M-s h prefix; see Table 39.

Key Action
M-s h . highlight symbol at Point
M-s h p highlight a given Phrase
M-s h r highlight text matching a Regexp
M-s h l highlight Lines containing matches
M-s h u Unhighlight a previous highlight
M-s h f hi-lock-find-patterns
M-s h w hi-lock-write-interactive-patterns

Table 39: Hi-Lock Mode Commands

The simplest command is M-s h . (highlight-symbol-at-point);
just invoke it and the symbol263 at Point, and all other occurrences of 263 Remember, a symbol is like a word,

but customized in programming lan-
guage Major Modes to match the lan-
guage’s notion of a variable or function
name.

that symbol in the Buffer, will be highlighted in yellow.
Actually, not always in yellow: the next Hi-Lock color will be used.

Hi-Lock has a default list of colors it uses; if you’ve already high-
lighted something in yellow, it will use the next color to avoid a con-
flict. You can explicitly choose your own color by giving M-s h . a
prefix arg.

And as a matter of fact, Hi-Lock doesn’t highlight with colors: it
uses Faces. You’ll recall that Emacs comes with 150 or so, and you can
use any of them for highlighting.

Instead of highlighting the symbol at Point, M-s h p (highlight-
phrase) prompts you for a phrase: that is, a sequence of words,
and highlights matches. It ignores case and whitespace distinctions
when looking for matches. Of course you can use a one-word phrase,
which is like highlighting a symbol which doesn’t happen to be right
at Point.

M-s h r (highlight-regexp) prompts you for a Regular Expres-
sion and a Face, and then highlights all the matches, and M-s h l

(highlight-lines-matching-regexp) works the same way except it
highlights the entirety of any lines that contain the matches. This is

https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively
https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively
https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively
https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively
https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively

use gnu emacs the plain text computing environment 329

what I used in Figure 45 to highlight the Regexp TODO BUG.
Of course you can remove any of the highlighting you’ve applied,

with M-s h u (unhighlight-regexp). It will prompt you to select
one of the patterns you’ve used and it will eliminate that one. With a
prefix arg, it will remove all the patterns you’ve used in this Buffer.

I mostly use Hi-Lock transiently throughout the day. turning it
on and off to enhance my focus as I work, but you can also set up
persistent highlighting for a given file that will be automatically
applied every time you visit the file.

Visualizing Whitespace

Whitespace—spaces, tabs, newlines, blank lines—is a big component
of your text, but it can be an annoying component, mostly because
it can be hard to tell these characters apart.264 Sometimes you don’t 264 Especially with a proportional font,

in my opinion.care about such subtle distinctions, but sometimes, depending on
what kind of program will be consuming your text, you need to.

M-x whitespace-mode is a Minor Mode that can help by display-
ing the various sorts of whitespace with a subtle (or not so subtle)
differentiation. In Figure 46 I’ve toggled it on.

Figure 46: M-x whitespace-mode

Spaces are shown as a centered dot in a gray background, which
makes the excess spaces between “until” and “there” more notice-
able; the space between “world” and “will” is a non-breaking space,
and is shown differently. Newlines are shown as a gray dollar sign,
and there’s a TAB character after the question mark shown as a right-
pointing guillemet.

These are all pretty subtle, so that whitespace-mode isn’t too jarring
to use.

But the trailing spaces on line 2 really stand out, as does the trail-
ing blank line at the end of the Buffer, since these are considered to
be always offensive.

You can use M-x customize-group whitespace RET to change these
Faces if you want them to be more or less noticeable.

whitespace-mode has a lot of options that you can customize, and
you can also interactively tweak them on and off in a given buffer
with M-x whitespace-toggle-options — type ? at the prompt.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Highlight-Interactively
https://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace

330 keith waclena

If you want whitespace-mode on all the time in all your Buffers,
you can use M-x customize-variable global-whitespace-mode. Per-
sonally I only occasionally turn whitespace-mode on, but it’s very
handy when I need it.

However, I do want to always see trailing whitespace at the ends
of lines, since it annoys me and I want to clean it up. You don’t
need whitespace-mode for this; just do M-x customize-variable

show-trailing-whitespace.
It’s easy to get rid of trailing whitespace when you notice it (as

you will, with this setting): M-x delete-trailing-whitespace will
delete all trailing whitespace in your Buffer, including all blank lines
at the end of the Buffer. If the Active Region is enabled, only the text
in the Region is processed. You could put this function in before-

save-hook so that these are cleaned up every time you save, but that’s
a little too helpful for my tastes.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace

Manipulating Plain Text

Emacs’s many modes and applications represent structured data
as plain text. In this chapter we’ll look at some commands that are
useful for manipulating text in a variety of domains and Modes. For
other facilities that are most useful for prose, see Emacs for Writers.

Mass Line Deletions

Data is often arranged in the form of lines, and a frequent operation
is to reduce it: either by deleting certain lines or by keeping only
others (which amounts to the same thing). You can delete all the
lines after Point that match a Regular Expression in one stroke with
M-x flush-lines, or the converse with M-x keep-lines. Complete
lines are deleted (or kept) regardless of how much text your Regexp
matches: M-x flush-lines RET foo deletes all the lines that contain
foo anywhere in the line. Both of these functions instead operate on
the Region if it is Active.

Your Regexp can cross line boundaries like, say, foo[[:space:]]+bar,
which will match foo and bar separated by whitespace, including
newlines; in this case the entirety of all the lines containing the match
will be deleted.

Emacs makes a distinction between deleting and killing: text that’s
deleted is simply thrown away265, while text that’s killed is put on 265 Of course, you can always Undo. . .

the Kill Ring and so can be yanked back.
There’s a variation on flush-lines called M-x kill-matching-

lines, which works in exactly the same way except instead of delet-
ing, it kills the lines, so they are pushed onto the Kill Ring in one
bunch. This makes it a good way of moving a bunch of discontiguous
lines, or even of copying them, if you immediately Undo after killing
them.

M-x delete-duplicate-lines is a powerful function that deletes
all but the first of any identical lines in the Region. So if the Region
contains the eight lines in column one of Table 40, then after M-x
delete-duplicate-lines it will contain only the lines in column two.
You’ll note that the order of the remaining lines stays the same, so

https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion

332 keith waclena

Before After
foo foo
bar bar
baz baz
bar zap
bar
zap
foo
baz

Table 40: M-x delete-duplicate-lines

this isn’t simply C-u M-| sort -u. . . .

Sorting Lines

Emacs has a powerful set of commands that sort lines, distinguished
by how they interpret the sort field.

The simplest is M-x sort-lines, which uses the entire line as the
sort field. M-x sort-fields sorts based on whitespace-separated
fields within the line; use a numeric argument to specify which field;
the default is 1. M-x sort-numeric-fields works the same way, but
interprets the contents of the sort fields numerically. In both cases, if
you specify a negative field number, it means to count the fields from
the right, so C-u -1 would sort on the last field in each line.

Here are some examples. In column one of Table ??, I generated 10

random words and paired them with 10 random numbers. Columns
2-4 illustrate different sorts. Note that in this example, sort-lines

Random sort-lines C-u 2 sort-fields sort-numeric-fields

sort-fields C-u 1 sort-numeric-fields

C-u 1 sort-fields

16 honkers 16 honkers 34 France 2 err
39 oysters 2 err 5 Madge 3 cuddling
99 disheartening 3 cuddling 59 corny 5 Madge
5 Madge 34 France 45 cranks 16 honkers
2 err 39 oysters 3 cuddling 34 France
3 cuddling 45 cranks 99 disheartening 39 oysters
59 corny 5 Madge 2 err 45 cranks
57 huskiest 57 huskiest 16 honkers 57 huskiest
45 cranks 59 corny 57 huskiest 59 corny
34 France 99 disheartening 39 oysters 99 disheartening

Table 41: Different Sorts

would happen to be the same as sort-fields, which is also the same
as C-u 1 sort-fields. In column 3, France comes first because the
sorting functions all work case-sensitively, and upper-case letters
precede lower-case letters. sort-numeric-fields is the same as C-u 1

sort-numeric-fields.
All of these sorts are what programmers call stable sorts: that is, the

https://www.gnu.org/software/emacs/manual/html_node/emacs/Sorting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sorting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sorting
https://en.wikipedia.org/wiki/Sorting_algorithm#Stability

use gnu emacs the plain text computing environment 333

relative order of records with equal keys is maintained. This means
you can sort a Region again to achieve a sub-sort.

M-x sort-columns lets you indicate the sort field as a rigid range
of (single-character) columns. You do this by effectively defining the
sort fields via a Rectangle: the upper-left-hand corner of the rectangle
determines the starting column of the sort field, the width of the
Rectangle in characters determines the its width, and the height of
the Rectangle in lines determines the range of lines to sort.

Consider this (slightly modified) excerpt from the table of contents
of the Emacs Manual. We want to sort these lines by the heading
(e.g. “Basic Undo”), ignoring the summary descriptions. We can’t
use sort-lines because the numbers will result in no change to the
order. We can’t use C-u 2 sort-fields because some of the headings
are two words long and some aren’t: we want “Basic Help” to sort
before “Basic Undo”, but sort-fields is sorting only on the second
field, so all the “Basic”’s will retain their relative order, due to the
stability of the sort.

1 Erasing:: Deleting and killing text.

2 Basic Undo:: Undoing recent changes in the text.

3 Basic Help:: Asking what a character does.

4 Basic Files:: Visiting, creating, and saving files.

5 Blank Lines:: Making and deleting blank lines.

6 Position Info:: What line, row, or column is point on?

7 Arguments:: Numeric arguments for repeating a command N times.

8 Repeating:: Repeating the previous command quickly.

9 Continuation Lines:: How Emacs displays lines too wide for the screen.

The solution is to set the Mark in front of “Erasing” and Point in
front of “How” on line 9, defining a Rectangle that encompasses the
entire width of the columns we want to use as the sort field. Now M-x

sort-columns will sort the lines correctly, resulting in:

7 Arguments:: Numeric arguments for repeating a command N times.

4 Basic Files:: Visiting, creating, and saving files.

3 Basic Help:: Asking what a character does.

2 Basic Undo:: Undoing recent changes in the text.

5 Blank Lines:: Making and deleting blank lines.

9 Continuation Lines:: How Emacs displays lines too wide for the screen.

1 Erasing:: Deleting and killing text.

6 Position Info:: What line, row, or column is point on?

8 Repeating:: Repeating the previous command quickly.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Sorting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sorting

334 keith waclena

Ignoring Case Distinctions

I mentioned that the sort commands are case-sensitive, which is why
France comes first in the C-u 2 sort-fields example above. You can
sort in a case-insensitive manner as well, but it’s a little awkward:
you have to change the variable sort-fold-case from its default of
nil to t:

M-x set-variable RET sort-fold-case RET t

You’ll have to remember to change it back to nil unless you’re happy
with case-insensitive sorting for the rest of your session. If you like,
you could make that variable Buffer Local before changing it, with
M-x make-variable-buffer-local.

Reversing Lines

You may have noticed that there seems to be no way to sort in reverse
order, and you’re right. But you can always just reverse the order
of all the lines you just sorted with M-x reverse-region. reverse-
region can of course also be used on unsorted lines.

Numbering Lines

linum-mode and global-linum-mode display line numbers in the
Fringe, but you may need to occasionally actually insert line numbers
into your text. We’ve already discussed two ways to do this: using a
counter in a Keyboard Macro, or using C-x r N (rectangle-number-
lines), which is usually easier: see Rectangles.

Whitespace and Blank Lines

Whitespace and blank (empty) lines are a common feature of most
Buffers. Whitespace encompasses several distinct but easily confused
characters, most notably the space (ASCII 32 or #x20) and tab (C-i,
ASCII 9 or #x09). Those two are confusing enough already with-
out throwing in the formfeed (C-l, ASCII 12 or #x0C) and the little
known vertical tab (C-k, ASCII 11 or #x0B). The newline (C-j, ASCII
10 or #x0A) and carriage return (C-m, ASCII 13 or #x0D), the two
possible line terminators, also count as whitespace in some contexts.
And then there are all the Unicode whitespace characters, like the
en and em spaces, the thin and hair spaces, and the whole family of
non-breaking spaces!

The mere visibility of these characters and how to distinguish
them on the screen is its own topic.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Locals
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sorting

use gnu emacs the plain text computing environment 335

It’s no wonder there are several commands for dealing with
whitespace; see also the related topic of Filling and Indenting.

Tabs vs. Spaces

Inserting a space is as simple as hitting the space bar (SPC), but how
do you insert a tab character? It’s not as simple as hitting the tab
key, because TAB is typically bound to a special command for indent-
ing lines; even in fundamental-mode it’s bound to indent-for-tab-

command. The guaranteed way to insert a single, actual, tab is via C-q

(quoted-insert) followed by the TAB key (see Inserting Non-Printing
Characters).

Probably more common than needing to insert a guaranteed tab
is needing to remove them. Tabs often cause problems in data files
and source code for languages that are especially picky about inden-
tation266. Of course it’s easy to change each tab to one space with 266 I’m looking at you, Python. . .

M-% (query-replace), but what if you want to preserve the relative
horizontal spacing? The M-x untabify command will replace all the
tabs in the region with one or more spaces, preserving the horizontal
spacing. That is, any given tab will display as one or more spaces to
expand to the next tab stop; untabify reifies each tab into as many
actual spaces as it takes to reach the same tab stop.

If you’re confused, or just never understood that Silicon Valley267 267 Season 3, Episode 6: “Bachmanity
Insanity”.episode, see Jamie Zawinski’s explanation.

Horizontal Whitespace

Sometimes your Buffer will contain several horizontal whitespace
characters in a row, like 5 spaces or a space and a tab. There are two
handy ways to get rid of the excess. M-\ eliminates all the whitespace
around Point, while M-SPC (just-one-space) replaces it all with just
one actual space character (with a numeric Arg, it replaces them
with exactly that many spaces). Note that these two commands only
treat in spaces and tabs, but not any of the more exotic whitespace
characters like formfeeds and non-breaking spaces.

If you’re like me and consider trailing whitespace—i.e., whitespace
characters following the last non-whitespace character on a line—
to be, in general, an intolerable offense, you can rid yourself of all
of these within the Region with M-x delete-trailing-whitespace.
This command works on all horizontal whitespace characters except
formfeeds.268 268 Formfeeds are excluded by these

commands to preserve their usefulness
in separating files into pages.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Inserting-Text
https://www.gnu.org/software/emacs/manual/html_node/emacs/Query-Replace
https://www.gnu.org/software/emacs/manual/html_node/emacs/Just-Spaces
https://en.wikipedia.org/wiki/Silicon_Valley_(season_3)#Episodes
https://www.jwz.org/doc/tabs-vs-spaces.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Deletion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace

336 keith waclena

Blank Lines

Blank lines and empty lines also have some handy commands. You
can of course create a new empty line by hitting RET (newline) a few
times; this takes the usual numeric Arg so you can insert, say, four
new lines with C-u RET or seven with C-u 7 RET. This leaves Point
after the last newline. Sometimes you want Point to be before the
new newlines, which is what C-o (open-line) is for. It’s especially
useful for working with Rectangles, Picture Mode, and Artist Mode,
where you need a big block of blank lines in which you can do two-
dimensional things.

C-x C-o (delete-blank-lines) is the inverse of C-o: when Point
is in the middle of a bunch of consecutive blank lines, C-x C-o re-
duces them to just one blank line; an additional C-x C-o removes that
remaining blank line too.

What’s the difference between a blank line and an empty line, ex-
actly? An empty line is what you get when you have two newlines
in a row: to be precise, two newlines with an empty string between
them. A blank line is two newlines with nothing but zero or more
whitespace characters between them. So a line full of nothing but
spaces and tabs is a blank line, but not an empty line.

There’s a variant of C-o that splits a line in two, vertically rather
than linearly: C-M-o (split-line). Here Point is represented by |:

Lorem ipsum dolor sit amet, |consectetuer adipiscing elit.

The result of a C-M-o would be:

Lorem ipsum dolor sit amet, |

consectetuer adipiscing elit.

M-^ (join-line) (a.k.a. delete-indentation) joins the current
line (containing Point) to the end of the previous line, regardless of
Point’s exact location in the current line. It ensures that there will be
one space between the joined lines; Point is positioned at that space
(which you could immediately eliminate with M-\).

This all means that if you repeatedly invoke M-^, it will join to-
gether several previous lines, going backwards. So if Point is in front
of “baz”:

foo

bar

|baz

two M-^’s will result in:

foo| bar baz

https://www.gnu.org/software/emacs/manual/html_node/emacs/Inserting-Text
https://www.gnu.org/software/emacs/manual/html_node/emacs/Blank-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Blank-Lines
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation-Commands

use gnu emacs the plain text computing environment 337

Indenting Lines

Indentation—that is, the presence or absence of whitespace at the
beginning of a line—is an annoyingly complex topic. Fortunately, it’s
less complex than it used to be decades ago, but Emacs of course still
supports all the old-school complexity. I think we can ignore most it!

Indentation is primarily a concern when you’re editing structured
text: programming languages, like Elisp or Python; data interchange
languages, like JSON; or markup languages, like HTML and Latex.
Emacs has a Major Mode for almost every such language you might
need to work with, and these Modes understand the indentation
requirements or conventions and handle it for you. Mostly, it boils
down to this: just hit TAB (wherever you may be in the line) to indent
the current line correctly.

The topic is most complex when you’re editing prose in a Ma-
jor Mode like text-mode. But who edits plain text prose anymore?
Decades ago I used text-mode all the time, but I probably haven’t
used it for 10 or more years. Now I do all my prose in the amazing
Org Mode, which uses a form of structured text that makes straight
prose more readable than text-mode, and yet lets me publish it as
plain text, HTML or a PDF269 with a keystroke. And as a structured 269 And many more formats. . .

text mode, Org handles indentation automatically: I just hit TAB.
So the only kind of indenting I’m going to discuss here is rigid

indentation, which you may occasionally need to do in any random
mode. The main command is C-x TAB (indent-rigidly): just set the
Region around a bunch of lines, and C-x TAB will prompt you:

Indent region with <left>, <right>, S-<left>, or S-<right>.

You’re in a transient mode for as long as you hit any unbroken se-
quence of the mentioned keystrokes; typing any other key will exit
the mode (and do whatever that other key is supposed to do).

<right> and <left> will indent or dedent, respectively, the whole
block of lines one column at a time. The shifted versions will move
in larger jumps of 8 columns at a time.270 With a positive or negative 270 Technically, they move to the next or

previous tab stop; see below.numeric argument, it will increase or decrease the indentation by
exactly that many characters. The related command C-M-\ (indent-
region), with a numeric argument, will re-indent all the lines in
the Region to the column indicated by the argument: C-u 12 C-M-\

will leave you with all the lines indented 12 spaces from the left,
regardless of how much each line was already indented.

The command M-m (back-to-indentation) conveniently moves
Point to the first non-whitespace character on the line: it’s like a C-a

for indented lines.

https://en.wikipedia.org/wiki/Json
https://en.wikipedia.org/wiki/Markup_language
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation-Commands

338 keith waclena

Tabs and Tab Stops

In many Major Modes, TAB is bound to indent-for-tab-command,
which typically271 causes Emacs to insert enough whitespace to move 271 I say typically because this is very

malleable command whose exact
behavior depends on the Major Mode
and the values of various User Options.

Point to the next tab stop. A tab stop is one of a set of specific column
numbers or horizontal positions, the idea being to use them to line
your text up in columns.

If there are no explicit tab stops defined, the default is every 8

columns.272 You can define tab stops at arbitrary positions (for the 272 Actually, the value of tab-width is
used.current Buffer) by invoking M-x edit-tab-stops.

Frankly, tab stops are not much used anymore, because, as men-
tioned above, people tend to use markup languages instead of manu-
ally laying out plain text. So I’ll say no more on this topic.

However, since TAB characters cause problems—they’re hard to
distinguish from runs of spaces, their displayed width varies de-
pending on the tab stops so they can seem to have different widths to
different people, and their presence can confuse certain programs—
I recommend telling Emacs never to implicitly insert them, and to
always use runs of spaces instead; this Init File snippet does that.
Because EIPNIF, you can of course always insert a real tab with C-q

TAB.
Init File

(setq-default indent-tabs-mode nil) ; don't insert tabs

Since you might encounter tabs in a file authored by someone else,
you can readily convert all tabs in the Region to equivalent runs of
spaces with M-x untabify; the inverse (rarely needed) is M-x tabify.

Case Changing

There are three ways to change the case of your alphabetic text: con-
verting it to all-uppercase, to all-lowercase, and to capitalize the first
letter of each word. There are two modes of invoking these case
changes: by word or by region.

Word Region
Upcase M-u (upcase-word) C-x C-u (upcase-region)
Downcase M-l (dowcase-word) C-x C-l (downcase-region)
Capitalize M-c (capitalize-word) M-x capitalize-region

The by-word commands change the case of the next word (leaping
over intervening non-alphabetic characters), or with a prefix arg,
the next N words (a negative argument works backwards); Point
moves across each converted word. So you can upcase the next sev-
eral words in a row with repeated invocations of M-u, for example.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Indentation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Tab-Stops
https://www.gnu.org/software/emacs/manual/html_node/emacs/Just-Spaces
https://www.gnu.org/software/emacs/manual/html_node/emacs/Just-Spaces

use gnu emacs the plain text computing environment 339

The by-region commands operate on the Region without moving
Point. Note that upcase-region and downcase-region are Disabled
by default, just because beginners, who aren’t comfortable with how
easy it is to Undo changes, are often disturbed when they acciden-
tally change the text of their entire thesis to all uppercase.

Tables

Emacs has a powerful set of commands for creating and editing
plain-text tables. Here’s a plain-text version of the Verlaines discogra-
phy from Wikipedia:

+-------+------------+----------------+-------+-------------+--------+

|Date of|Title |Label |Charted|Certification|Catalog |

|Release| | | | |Number |

+-------+------------+----------------+-------+-------------+--------+

|1985 |Hallelujah |Flying |- |- |FN040 / |

| |All the |Nun/Homestead | | |HMS138 |

| |Way Home | | | | |

+-------+------------+----------------+-------+-------------+--------+

|1987 |Bird Dog |Flying |- |- |FN077 / |

| | |Nun/Homestead | | |HMS095 |

+-------+------------+----------------+-------+-------------+--------+

|1987 |Juvenilia |Flying Nun |- |- |FN COMP |

| | | | | |02 |

+-------+------------+----------------+-------+-------------+--------+

|1989 |Some |Flying |- |- |FN129 / |

| |Disenchanted|Nun/Homestead | | |HMS162 |

| |Evening | | | | |

+-------+------------+----------------+-------+-------------+--------+

|1991 |Ready to Fly|Slash |- |- |C30718 |

+-------+------------+----------------+-------+-------------+--------+

|1993 |Way Out |Slash |- |- |D31032 |

| |Where | | | | |

+-------+------------+----------------+-------+-------------+--------+

|1996 |Over the |Columbia |- |- |486880.2|

| |Moon | | | | |

+-------+------------+----------------+-------+-------------+--------+

|2003 |You're Just |Flying Nun |- |- |FNCD476 |

| |Too Obscure | | | | |

| |for Me | | | | |

+-------+------------+----------------+-------+-------------+--------+

|2007 |Pot Boiler |Flying Nun |- |- |FNCD501 |

+-------+------------+----------------+-------+-------------+--------+

|2009 |Corporate |Dunedinmusic.com|- |- | |

| |Moronic | | | | |

+-------+------------+----------------+-------+-------------+--------+

|2012 |Untimely |Flying Nun |- |- |FNCD524 |

| |Meditations | | | | |

+-------+------------+----------------+-------+-------------+--------+

|2020 |Dunedin |Schoolkids |- |- |SMR-060 |

| |Spleen |Records | | | |

+-------+------------+----------------+-------+-------------+--------+

I created this by simply cut-and-pasting the Wikipedia table from
the web page, which results, in my Buffer, in one line per row, with
columns separated by tab characters. I set the Region around this and

https://en.wikipedia.org/wiki/The_Verlaines

340 keith waclena

invoked M-x table-capture and got the result you see above.
There are commands to split, merge, enlarge, and shrink cells, edit

easily within a multi-line cell, justify cell contents, insert and delete
rows and columns: it’s very powerful.

The only question is, who needs attractive plain-text tables now
that most documents are “typeset” from a markup language like
LATEX or Org Mode? Org Mode, in fact, has its own powerful markup
for tables which in my opinion is much nicer to use—it’s in many
ways more powerful273, though these plain-text tables are probably 273 Including full programmable spread-

sheet capabilities, for example.easier for multi-line cells.
The main use, nowadays, for this facility is probably for program-

mers who want to insert plain-text tables into comments in pro-
gramming language source code. If you need these, see “Text Based
Tables” in the Emacs manual.

References

Zawinski, Jamie. 2000. Tabs Versus Spaces: An Eternal Holy War.
https://www.jwz.org/doc/tabs-vs-spaces.html.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Table-Conversion
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Based-Tables
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Based-Tables
https://www.jwz.org/doc/tabs-vs-spaces.html

Folding Text

It can be very useful to fold or collapse some of your text in order to
ignore or to focus on certain parts, or to get an outline-like high-level
overview. Emacs provides several subsystems to do this. They can be
divided into two categories: one in which you must explicitly impose
an outline- or tree-like markup to your text ahead of time, and the
other which recognizes and folds text based on its implicit structure.

Markup-Based Folding

Emacs has had markup-based folding since the very beginning in the
form of Outline Mode; it’s basically Text Mode plus extremely simple
markup to express your text in the form of an outline, which brings
the ability to fold and unfold the headlines of the outline.

Outline Mode has additional commands to navigate by headline,
and move headlines (and their folded components) up or down, or in
and out (demoting or promoting them, headline-wise).

It’s a big payoff for such a trivial amount of markup. But for most
Emacsers, Outline Mode has been rendered obsolete by Org Mode.

Org Mode is like Outline Mode on steroids: it does exactly what
Outline Mode does, with the same markup, but adds hundreds of
additional features. If you think Outline Mode sounds useful, just
skip directly to Org Mode instead: it’ll be an improvement even if
you aren’t interested in its extra features.

Org Mode gets an entire chapter to itself; see Org Mode for details.

Implicit Folding

The problem with markup-based folding is of course the markup.
But lots of text has implicit structure that Emacs can exploit for fold-
ing without your having to add any. Most programming languages,
for example, have an implicit tree structure eminently suitable for
folding. But even simple indentation can be used for folding pur-
poses.

https://en.wikipedia.org/wiki/Folding_editor

342 keith waclena

Hideshow Minor Mode

Hideshow Minor Mode is the high-level built-in mechanism for im-
plicit folding. When enabled, you can fold function definitions in the
source code of many programming languages. Consider this Python
function from Wikipedia:

def qsort(L):

if L == []:

return []

pivot = L[0]

return (qsort([x for x in L[1:] if x < pivot]) +

[pivot] +

qsort([x for x in L[1:] if x >= pivot]))

With Point anywhere in the definition, you can fold it with one
keystroke into this:

def qsort(L):...

Note the ellipsis ... at the end of the line, which indicates the pres-
ence of hidden folded text under this line (the dots are just for dis-
play and are not actually actually added to your text). Motion com-
mands will skip over the ellipsis as if it were one character wide.

As with all the Emacs text folding subsystems, the invisible text
is still there: you can search into it (which will unfold it), and if you
copy a region that includes the folded text, the copied text contains
all the hidden text as well; if you save the Buffer’s file when some of
the text is folded, you are of course saving all the hidden text as well,
and there’s no indication in the file that the text was folded (the next
time you open the file, all your text will be there, unfolded).

You can unfold anything you’ve folded, and you can also fold
and unfold all the top-level functions in one go. A Buffer consisting
of hundreds of lines of code, when completely folded, would look
something like:

def writable(path):...

def myurlopen(url, count = 0):...

def httpopen(scheme, hostport, path, parms, query, frag, count = 0):...

def snarf(url, clone):...

checkout a locked version from rcs

def co(clone):...

checkin (ci -l)

def ci(clone):...

Truth be told, I don’t like Hideshow. For one thing, the default key-
bindings are just unusable. But this being Emacs, that’s easily fixed.
The bigger problem is that it doesn’t work very well. It seems to
work fine in python-mode, but in c-mode it does a bad job of recog-
nizing function definitions, and it doesn’t work at all for my favorite
(non-Lisp) programming language, OCaml (which has an admit-
tedly very free-form syntax). This is why I use the third-party library
Yafolding instead; see below.

https://en.wikipedia.org/wiki/Python_syntax_and_semantics
https://www.gnu.org/software/emacs/manual/html_node/ccmode/Introduction
https://ocaml.org/

use gnu emacs the plain text computing environment 343

See “Hideshow” in the Emacs manual for more information. If
you want to use it, try this Init File snippet that adds two usable key
bindings for the most commonly used commands:

;; Hideshow for folding in programming modes

(add-hook 'prog-mode-hook 'hs-minor-mode)

;; from: Joseph Eydelnant

(defvar ue-hs-hide nil "Current state of hideshow for toggling all.")

(defun ue-toggle-hideshow-all ()

"Toggle hideshow all."

(interactive)

(setq ue-hs-hide (not ue-hs-hide))

(if ue-hs-hide

(hs-hide-all)

(hs-show-all)))

;; add usable key bindings

(with-eval-after-load 'hideshow

;; toggle hiding this block

(define-key hs-minor-mode-map (kbd "C-<return>") 'hs-toggle-hiding)

;; toggle hiding all blocks in buffer

(define-key hs-minor-mode-map (kbd "C-M-<return>") 'ue-toggle-hideshow-all))

Yafolding Mode

Zeno Zeng’s Yafolding Mode is the package I prefer for folding text.
It works great in every programming language I’ve tried, including
OCaml with its nested function definitions expressed without any
braces, because it just works based on indentation, which almost all
programmers use consistently.

I only use two of its commands: C-<return> (yafolding-toggle-
element) to toggle the folding of the “element” (typically a function
definition) at Point, and C-M-<return> (yafolding-toggle-all)
to toggle the folding of every element in the Buffer. This Init File
snippet will set it up:

(unless (package-installed-p 'yafolding)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'yafolding)))

(add-hook 'prog-mode-hook

(lambda () (with-demoted-errors "%s" (yafolding-mode +1))))

https://www.gnu.org/software/emacs/manual/html_node/emacs/Hideshow

344 keith waclena

Selective Display

The simplest, but lowest level, text folding command is C-x $ (set-
selective-display). It’s very old, and Yafolding does the same thing
in a much friendlier manner. But for reasons of historical interest,
here’s how Selective Display works.

Given a numeric argument of N, C-x $ folds all lines that are
indented more than N spaces. Suppose your Buffer contains this
simple outline-like text274: 274 Of course, to manage an outline like

this you’d really use Org Mode and its
built-in folding.Folding Text

Markup-Based Folding

Outline Mode

Org Mode

Implicit Folding

selective display

Hide / Show Minor Mode

3rd-party

yafolding

These lines are indented in steps of two, with the first line not in-
dented at all. So C-u 1 C-x $ would hide all lines but the first:

Folding Text...

To unfold and reveal all your text, invoke C-x $ without any argu-
ment.

Line-based motion commands like C-n, C-p, <up>, and <down> skip
over the folded text, but other commands will move into it, including
searching. If you find yourself lost in the folded text, just unfold it.

If you invoke C-u 3 C-x $ it will hide all the lines with indenta-
tion of 3 or more spaces:

Folding Text

Markup-Based Folding...

Implicit Folding...

Having to count the spaces in the indentation is an awkward step.
This alternative function automates the process. If you like it, you can
use it to replace the standard command with:

(global-set-key [remap set-selective-display] 'ue-auto-selective-display)

but it’s really just a poor man’s Yafolding.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Selective-Display
https://www.gnu.org/software/emacs/manual/html_node/emacs/Selective-Display

use gnu emacs the plain text computing environment 345

(defun ue-auto-selective-display (arg)

"Hide lines with greater indentation than this one.

With a prefix ARG, reveal all lines.

This function simply sets `selective-display'."
(interactive "P")

(if arg

(setq selective-display nil)

(save-match-data

(save-excursion

(forward-line 0)

(if (looking-at (rx (+ space)))

(setq selective-display (1+ (length (match-string 0))))

(setq selective-display 1))))))

International Character Set Support

Figure 47: M-x view-hello-file (C-h
h)

Emacs has very sophisticated support for international languages
and the character sets and encodings used to represent them. This is
one of the more complex Emacs topics: there are 23 pages devoted
to it in the manual and I won’t attempt to cover all of it here. I’ll
describe the most useful facilities for a mostly-monolingual Emacs
user, from my perspective as an English speaker.

In the earliest days of computing, the only characters you could
use were the upper case Latin alphabetics, the base 10 digits, and a
handful of punctuation characters. Pretty quickly, non-English speak-
ers and users of non-Latin alphabets, syllabaries, and logographies—
various scripts—defined their own mutually incompatible character
sets, and a Tower of Babel reigned.

You would think that, since the polyglot Unicode is now the stan-
dard, with its support for 160-odd historical and modern scripts and
over 150,000 characters, symbols, and emojis, there would be no need
to handle any other character sets, but in addition to legacy data,
Unicode is not yet completely dominant. In particular, users of Chi-
nese, Japanese, Korean, and Cyrillic scripts still use non-Unicode
character sets for various reasons. While most text editors support
Unicode, they may only support Unicode (and sometimes only Uni-
code’s UTF-8 encoding).

Emacs supports 1,071 character sets and encodings, including

https://en.wikipedia.org/wiki/Unicode

348 keith waclena

Unicode and ISO-2022 (which allows you to switch between different
character sets in a given Buffer or File). It also handles bidirectional
text: that is, you can combine scripts that are written from right to
left (like Arabic or Hebrew) with text written from left to right (like
English). For a quick demonstration of all this, invoke C-h h (view-
hello-file).

Emacs also supports 212 input methods, which are ways of entering
characters that might not have keys on your keyboard, including
both natural language scripts and various types of symbols (e.g.
mathematical). You can see all of them via M-x list-input-methods.
The Package Manager has 18 additional input methods.

Language Environment

You can enter or view any kind of text in any script in any Buffer
at any time. That is, you can have, say, Latin, Cyrillic, Hebrew, and
Tamil scripts all mixed together; the buffer popped up by C-h h is a
perfect example—see Figure 47.

But Emacs always has a notion of your default language environ-
ment. Normally, your operating system defines this275 and Emacs 275 Your locale.

inherits it. (If your OS sets it wrong, or you just prefer a different
one for Emacs, you can override it; see “Language Environments” in
the Emacs manual.) Your language environment determines which
character sets (Emacs calls them coding systems) are assumed as de-
faults for the files you create and edit, the script used to represent
such text (and therefore an appropriate font for that script), and a
way of interpreting your keyboard to enter the glyphs that comprise
the script.

If your OS has declared your correct language environment and
you have the necessary fonts installed, everything in Emacs should
work out of the box.

You can browse all the language environments with C-h L (describe-
language-environment); here’s what you’ll see if you choose Czech:

https://en.wikipedia.org/wiki/ISO/IEC_2022
https://www.gnu.org/software/emacs/manual/html_node/emacs/International-Chars
https://www.gnu.org/software/emacs/manual/html_node/emacs/International-Chars
https://www.gnu.org/software/emacs/manual/html_node/emacs/Select-Input-Method
https://en.wikipedia.org/wiki/Locale_(computer_software)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Language-Environments
https://www.gnu.org/software/emacs/manual/html_node/emacs/Coding-Systems
https://www.gnu.org/software/emacs/manual/html_node/emacs/Language-Environments
https://www.gnu.org/software/emacs/manual/html_node/emacs/Language-Environments

use gnu emacs the plain text computing environment 349

Czech language environment

This language environment is almost the same as Latin-2,

but sets the default input method to "czech",

and selects the Czech tutorial.

Sample text:

Přejeme vám hezký den!

Input methods (default czech)

czech ("CZ" in mode line)

czech-prog-3 ("CZ" in mode line)

czech-prog-2 ("CZ" in mode line)

czech-prog-1 ("CZ" in mode line)

czech-qwerty ("CZ" in mode line)

Character sets:

ascii: ASCII (ISO646 IRV)

latin-iso8859-2: Right-Hand Part of ISO/IEC 8859/2 (Latin-2): ISO-IR-101

Coding systems:

iso-8859-2 (‘2’ in mode line):

ISO 2022 based 8-bit encoding for Latin-2 (MIME:ISO-8859-2).

(alias: iso-latin-2 iso-8859-2 latin-2)

The most practically useful section of this information is the list of
input methods, which in this case are systematic ways for someone
who works primarily in Czech to enter characters from the Czech
script.

Inserting the Occasional Funny Character

But first let’s discuss the non-systematic way to enter characters: that
is, characters that aren’t a normal part of your spoken language’s
script, ones that you only occasionally need to type. This includes
typographical symbols like the pilcrow or paragraph symbol ¶, the
copyright symbol ©, emojis. and the odd character from some other
language with a different script. With no disrespect to natural lan-
guages other than your own, I’ll call all of these funny characters.

The easiest way to insert these characters is with C-x 8 RET

(insert-char), which uses Completion to prompt you for the name
of a Unicode character. Usually you can just narrow the enormous
list of 45,000-odd candidates by typing words from their official long
Unicode name—the word “paragraph” will narrow the list to 10 dif-
ferent paragraph symbols, and you’ll see the Pilcrow you want near
the elegant Ethiopic Paragraph Separator. If you know the Unicode
code-point (a hexadecimal number), you can enter that instead.

The C-x 8 prefix has a whole slew (close to 200) of other conve-
nient key bindings to insert common funny characters. For example,
C-x 8 C inserts the copyright symbol; C-x 8 [and C-x 8] insert
the left- and right-curly single quotation marks, etc. I don’t actually

https://www.gnu.org/software/emacs/manual/html_node/emacs/Inserting-Text

350 keith waclena

know any of these and just use C-x 8 RET for everything I need (my
completion system puts the ones I use regularly at the top of the
list). To see the complete list of shortcuts, type C-x 8 C-h (or C-h b

(describe-bindings) and search for “C-x 8” in that Buffer).

Input Methods

If you’re typing in a language that uses a lot of diacritical marks.
like Czech, or a completely non-Latin script, like Ukrainian, you’ll
be typing C-x 8 way too much. Instead, you want to use an input
method. An input method causes Emacs to translate the ordinary
ASCII characters of your keyboard into non-ASCII characters.

Broadly, there are two kinds of input methods. One kind remaps
all (or many) of your normal keyboard keys, often to match the typ-
ical hardware computer keyboard that would be used by the user of
a given language; the input method Emacs calls ukrainian-computer

matches the Ukrainian keyboard in Figure 48.

Figure 48: A Ukrainian Keyboard

So to enter the Ukrainian ϕ character, you would just press the a key,
and to enter the Ukrainian E you press the T key.

If Ukrainian is your default language environment, this input
method will be your default.

But perhaps you’re an English speaker with a default English
language environment who also speaks Ukrainian and therefore
sometimes types large amounts of Ukrainian text. To solve this prob-
lem, you can change the input method associated with a given Buffer
with C-x RET C-\. After switching away from your default like this,
a simple C-\ will toggle back and forth between the two; use C-u C-\

to change to yet another input method.
Another use for the broad type of input method is to use a non-

standard keyboard layout for your default language environment,
like the well-known Dvorak kayboard layout for English, regarded
as superior to QWERTY by its partisans. Just do C-x RET C-\ and
specify english-dvorak.

The second, less broad, kind of input method only changes a few
ASCII characters and treats them as Prefix Keys that you can use to
enter funny characters. For example, there are several input methods

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://en.wikipedia.org/wiki/Dvorak_keyboard_layout
https://en.wikipedia.org/wiki/QWERTY

use gnu emacs the plain text computing environment 351

for entering the characters of the International Phonetic Alphabet
(IPA) used by linguists, and by lexicographers to indicate pronunci-
ation in dictionaries, whereas the tex input method changes only a
few characters (mostly \, ^, and $) into prefixes to enter close to 2,000

funny characters, including many technical and mathematical ones,
like \exists for ∃ and \lambda for λ; you can use TAB to complete
these.276 276 These mnemonics come from those

used in the TEX typesetting system.I use latin-1-postfix as my default transient input method (the
one that C-\ will switch to by default); this makes it easy for me to
enter the occasional foreign language277 proper noun by making all 277 For me, non-English. . .

the ASCII characters that are typically accented in Western European
Latin-script languages into prefixes.

So after enabling latin-1-postfix with C-\, I can more easily
type the French word déçût: when I typed “e” Emacs reminded me,
in the Echo Area, of the possible stand-ins for accents, displaying:
e["’/^‘]—I then typed ’, the pair of which became “é”—and when I
typed “c” I saw the reminder c[,] and added the comma to get “ç”,
etc.; see Table 42. Typing an e followed by some character other than
any of the special e-accent stand-ins just gives you a plain e followed
by that character—so et for example comes out as et—, and if you
need to type an e followed by one of the stand-ins, you just double
the stand-in, so e^^ gives me e^ rather than ê. It’s an easy to learn
system, even if you don’t use it much.

Keystroke d e ’ c , u ^ t
Buffer Contents d de dé déc déç déçu déçû déçût
Echo Area e["’/^‘] c[,] u["’^‘]

Table 42: Typing déçût with latin-1-

postfix

Table 43 summarizes some of what the latin-1-postfix Input
Method can do.

Accent Postfix Examples
acute ’ a’ → á

grave ‘ a‘ → à

circumflex ^ a^ → â

diaeresis " a" → ä

tilde ~ a~ → ã

cedilla , c, → ç

nordic / d/ → ð ; t/ → þ ; a/ → å ; e/ → æ ; o/ → ø
others / s/ → ß ; ?/ → ¿ ; !/ → ¡ ; // → °

various << → « ; >> → » ; o_ → º ; a_ → ª

Table 43: latin-1-postix Input Method
Summary

There’s also a latin-1-alt-postfix Input Method that’s only
slightly different (thought by some to be more convenient), and a
latin-1-prefix Method in which you type the activating punctua-
tion mark before the letter. There are a couple of dozen more -prefix

and -postfix Input Methods suited to various other combinations of

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/TeX

352 keith waclena

scripts.

Coding Systems

Emacs supports 267 coding systems, but they only really come into
play when you read (visit) or write (save) a file, because data in
memory is represented in an internal format known only to Emacs;
at the transition between Emacs and the file system, Emacs has to
translate to or from a coding system.278 278 Coding systems also come into play

at the interface of Emacs and another
process, Emacs and a filename, or
Emacs and a terminal; see “Interna-
tional” in the Emacs manual.

Emacs can recognize some coding systems automatically when
you visit a file, or when you save a file after editing, but some se-
quences of bytes in text are inherently ambiguous. When this occurs,
Emacs will choose based on an order of preference if possible; other-
wise you’ll be offered a list of compatible coding systems and asked
to identify the correct one. When Emacs chooses one for you, you can
find out which one it is with M-x describe-current-coding-system,
and if you disagree, you can change it with C-x RET r (revert-
buffer-with-coding-system).

You can force a persistent specific coding system for a particular
file in two ways: via a File-Local Variable or, more broadly, set it
according to a file extension. For example, to specify Chinese BIG5

via a File-Local Variable, you could add this line to the top of the file:

-*- coding: big5; -*-

Or, if all your .txt files are in BIG5, you could specify that in
the auto-coding-alist variable. That variable is flexible enough to
specify a coding system for just one file, or all the files in a given
directory, regardless of their extension.

Line Endings

One final wrinkle concerns line endings: the way text encodes where
lines break. This is independent of the coding system and is indi-
cated by control characters. There are three different ways to indicate a
line ending:279 279 Thanks, history. . .

unix use a control-J (ASCII 10 = #x01 = ^J) aka linefeed

mac use a control-M (ASCII 13 = #x0D = ^M) aka carriage return

dos use a pair of carriage return followed by linefeed (^M^J) aka
CRLF

As the names suggest, these three different line-endings are man-
dated by the three major families of operating systems. If you are
a Windows user and receive a file created by a Macintosh user, you

https://www.gnu.org/software/emacs/manual/html_node/emacs/International
https://www.gnu.org/software/emacs/manual/html_node/emacs/International
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Coding
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Coding

use gnu emacs the plain text computing environment 353

might have trouble distinguishing the breaks between lines because
they are encoded differently. How massively annoying!

The good news is, the Unix operating systems280 have mostly won 280 Including Linux and the BSDs.

this battle281. Apple switched from its carriage return line endings 281 Though not so recently that you
will never encounter a file with lines
encoded “the wrong way”. . .

after 2001, when they rewrote the Mac OS operating system and
based it on Unix, inheriting the linefeed. So the unix category above
includes Mac OS X, and the mac category only includes old uncon-
verted Classic Mac OS data.

Unfortunately, Microsoft Windows is still sticking to its CRLF line
endings (inherited from MS-DOS in 1985), by far the most awkward
of the three.

As a result of all this, every one of the 267 coding systems comes
in all three flavors of line endings: so there’s utf-8-unix, utf-8-mac,
and utf-8-dos; also big5-unix, big5-mac, and big5-dos; and so on.
You don’t usually need to specify the full names of the coding system
and can just say utf-8 and big5 and the like—they will default to
your operating system’s line-ending type—and Emacs will typically
figure out the line endings automatically when you read in a foreign
file. But when you occasionally need to save a file for a Windows
user, you can do so by spelling it out explicitly.

Remote File Editing with Tramp

One of Emacs’s killer features is its ability to transparently edit files
over the Internet on remote computers via the Tramp subsystem.
Instead of logging-in to a remote computer (with ssh, say) and fir-
ing up Emacs on that computer to edit a file, you just use C-x C-f

(find-file) with special remote-file syntax and edit the file in your
local Emacs. This means that Emacs doesn’t even need to be installed
on the remote computer!

While other editors have added a version of this feature recently,
Emacs has been doing this since at least 1989

282. I believe that Tramp 282 Previously we used the ange-ftp

package for this; it still exists, but the
much more powerful Tramp package
has handled remote editing since 1998.

supports more remote file access protocols and features than any
other editor.

Every time that Emacs asks you for a filename, you can option-
ally use Tramp’s remote file syntax283. So if your username on 283 That includes filenames you might

put in your Init File.the host myoffice.example.com is mary, you might edit your file
~/txt/project.org on that computer with:

C-x C-f /ssh:mary@myoffice.example.com:txt/project.org

It will pop up a Buffer called project.org and editing will work
exactly like editing a local file, at local speeds. You might notice a
few messages about the network connection flash past in the Echo
Area if you’re paying attention, but otherwise it’s hard to tell you’re
editing a remote file. Backup files and auto-save files work as you’d
expect. When you save your Buffer in any of the usual ways, your
edits are written out to the remote file. You don’t have to specially
shut-down a network connection: just kill the Buffer whenever you
like (or not).

Additionally, you can visit a remote directory with C-x C-f or
C-x d (dired) and it will of course come up in a Dired buffer! All
the normal Dired file management commands work as usual. Pop
up another Dired Buffer—either on that remote host, or on your
local host, or on a second remote host—and you’ve got two-panel
file management and can easily copy or move files from one host to
another.

If you run M-x pwd you’ll see that this Buffer’s working directory

https://en.wikipedia.org/wiki/Secure_Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Names

356 keith waclena

is /ssh:mary@myoffice.example.com:txt/. This has interesting im-
plications. If you visit another file from this Buffer with C-x C-f (or
anything else) from this Buffer, the default directory will indeed be
the remote directory revealed by pwd, so it’s easy to pull up more
remote files; if you don’t want another remote file. just delete the
remote part of the filename in the prompt.

Probably the most amazing feature is that Emacs functions that
run external commands, like M-x grep, M-x shell, M-x compile,
Dired’s ! (dired-do-shell-command) and & (dired-do-async-shell-
command) commands, and the like all run on the remote host, due to the
default-directory being expressed in Tramp syntax. This means
all the VC version control commands work remotely too: pull up
that remote file, make your edits, diff it against an older version, and
check in your changes with the same simple VC commands you use
on local files: Tramp makes them run remotely.

Getting Started

Let’s see if Tramp works for you out of the box! The full Tramp re-
mote file syntax looks like:

/method:user@host#port:/path/to/file

Most of these components have default values; see Table 44. The

Component Default Meaning
method scp how to connect (protocol)
user local user remote user
host remote hostname
port standard port port number for the protocol
path ~/. remote home directory

Table 44: Tramp Filename Syntax

most commonly used method is probably ssh or scp. If your local
username is the same as your remote username, you can skip the
user@ part of the filename. You can use a relative hostname (e.g. just
myoffice) if your local host’s DNS is set up appropriately (or if you
have hostname patterns configured in your SSH configuration). If the
remote server is listening on the standard port (e.g. port 22 for ssh),
you can leave out the #port component.

You can also write the method as - if the method named in tramp-

default-method (scp) is the one you want284. Finally, if the /path/to/file 284 You can of course Customize what
that is.is in your remote home directory, you can use a relative path (e.g.

just file). So the shortest remote filename might be: /-:myoffice: to
pull up Dired on your home directory on myoffice.example.com

But let’s issue this command:

C-x C-f /ssh:mary@myoffice.example.com:newfile

https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation

use gnu emacs the plain text computing environment 357

Tramp supports completion of most components of a remote file
name. If you’re using SSH public key encryption and are running
ssh-agent(1), there will be no need for you to type your passphrase,
but if otherwise, Tramp will prompt you.

You’ll know it worked if you get a Buffer named newfile and no
errors! But to confirm, do M-x pwd in this Buffer and make sure the
output looks something like:

Directory /ssh:myoffice.example.com:/home/mary/

Troubleshooting

When both the local and the remote host are running Unix, and
you’re already set up and happily using SSH for your logins outside
of Emacs, Tramp is easy to configure and use. With non-Unix operat-
ing systems (like Windows) or less common login protocols (like, say,
telnet (heaven forbid!)), you may need to do a little light reading.
Fortunately, the 5,203-line Tramp manual is very well written, and
Tramp maintainer Michael Albinus is one of the most responsive and
helpful developers on the help-gnu-emacs mailing list.

In my experience285, the most common problem encountered in 285 As an ssh’ing Unix user. . .

using Tramp is having an exotic remote shell prompt. Tramp needs be
able to recognize your shell prompt, and does a pretty good job at it,
simply assuming that your prompt ends with one of the characters
#, $, %, or > followed by a space, which matches the defaults of most
shells. If your prompt doesn’t fit this requirement, you can fix it by
changing the value of shell-prompt-pattern.

If you use a fancy multiline shell prompt with right-hand end-of-
line components, lots of colors, or perhaps an ASCII-art talking cow,
then you may have trouble. This is fixable by hacking your shell’s
rc file to turn off all the sexiness (only when Tramp is controlling
the shell—you can still have your crazy prompt in your interactive
shells).

If you’re a zsh(1) or bash(1) user, using one of these lines as the
first line of your ~/.zshrc or ~/.bashrc on hosts that you want to
Tramp into should do the job:

for tramp

[! -n "$INSIDE_EMACS"] && [["$TERM" == "dumb"]] && unsetopt zle && PS1='$ ' && return # zsh

[! -n "$INSIDE_EMACS"] && [["$TERM" == "dumb"]] && PS1='$ ' && return # bash

You can set up your fancy cow prompt after this line and it’ll work
for you as usual in interactive shells.

For more information and other tips, see “Remote shell setup” in
the Tramp manual.

https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Names
https://en.wikipedia.org/wiki/Cowsay
https://www.gnu.org/software/emacs/manual/html_node/tramp/Remote-shell-setup

358 keith waclena

Tramp Methods

While the ssh method is probably the most commonly used Tramp
remote file access method (it is for me), there are actually 35 in total.
Ignoring four that are for obsolete and insecure protocols286 and 286 rsh, rcp, telnet, and nc (netclient).

two for Kerberos users, we can divide the remainder into four main
groups: methods for accessing files on Unix systems, methods for
accessing local files under different permission schemes, methods for
accessing specialized file systems, and methods specific to Microsoft
Windows.

Orthogonal to these four classes are two different types of connec-
tion: inline and external.

Inline methods maintain a persistent connection to a remote host,
so even if logging in to some remote happens to be slow, after the
first connection it will be speedier. These methods are good for
frequently editing relatively small remote files, but have relatively
high overhead that may slow down access to large files: if you know
you’re about to visit a large file, you might opt for the equivalent
external method.287 287 Of course you’re now wondering,

“how large is ’large‘?”. Unfortunately
it depends on the speed of your local
computer, your network connection,
and your remote computer, so only
personal experience will tell.

External methods effectively use an additional out-of-band channel
to transfer the data (possibly storing the data in a temporary file).
These can be slower due to the need to set up and tear down the
additional channel, but faster at transferring large amounts of data.

Unix Remote Access Methods

Unix users accessing remote Unix systems will typically be happy
with these three methods.288 288 Note that for these and other Tramp

methods, you’ll need to have the
prerequisite software (e.g., OpenSSH
and rsync) installed on both the local
and the remote host.

Method Type Comments
ssh inline Great for small files
scp external Great for large files
rsync external Best for large files that already exist on both hosts

Local Permission Access

Sometimes you need to access a file on your local system as if you
were a different user. Tramp makes this situation look like a remote
file access.

The most common situation for Unix users on their own desktop
machine is the sudo method, which lets you access a file or directory
as root via the sudo(8) program. It also allows you run a root shell
in your Emacs by visiting a file or directory as root and then running
M-x shell within that Buffer.

https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://www.openssh.com/
https://rsync.samba.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell

use gnu emacs the plain text computing environment 359

Since this family of methods run on the local host, you just leave
the hostname part of the remote filename empty, e.g. /sudo::/etc/resolv.conf.

The sudoedit method is a more paranoid version of sudo that’s
more annoying to use.

su is similar to sudo but uses su(8) and allows you to edit as some
other non-root user; of course you have to have the ability (i.e., per-
mission) to use su(8) outside of Emacs for this to work.

doas(8) is an alternative to sudo that is the default on OpenBSD
systems.

Finally, the sg method uses sg(8) to let you edit files under a
different group.

Method Type Comments
sudo inline Root access
sudoedit external Paranoid root access
su inline Access as a different user
doas inline . . . via doas(8)

sg inline Access as a different group

Specialized File System Access

There are a number of “file systems” that aren’t real file systems,
i.e. aren’t simply organizations of bytes on a disk partition. Instead,
they’re applications that offer up files, masquerading as file systems.
Tramp can handle several of these. Note that all of them require
external programs to be installed, and these are all external methods.

Method Comments
ftp For FTP servers
sftp SSH FTP
rclone Many remote storage systems via rclone(1)

sshfs Remote files via the sshfs file system
afp Apple Filing Protocol
dav WebDAV
davs . . . via SSL
gdrive Google Drive
nextcloud NextCloud and OwnCloud systems
mtp Media devices like phones and cameras
adb Access a phone through the Android Debug Bridge

Windows-Specific Access Methods

Microsoft Windows does things its own way. If you’re a Unix Emacs
user that needs to access files on a remote Windows machine, prob-
ably all you’ll need is the smb method. If you’re a Windows Emacs

https://en.wikipedia.org/wiki/OpenBSD

360 keith waclena

user that needs to access remote hosts, whether remote Unix or re-
mote Windows hosts, you may need to use the other methods de-
pending on how your Window system is set up.

Method Type Comments
smb external Access files via Samba or SMB
sshx inline see note
scpx inline see note
plink inline . . . via Putty
plinkx inline . . . see note
pscp external . . . via Putty
psftp external . . . via Putty

The Tramp manual says that the methods with a trailing “x” are
useful for MS Windows users when the standard methods trigger an
error about allocating a pseudo TTY, and sure enough I need to use
sshx on the one Windows machine I occasionally use in a meeting
room at work.

Frankly, as someone who’s basically never used MS Windows, I
can’t pretend to understand these distinctions. As always, see the
manual.

Third-Party Tramp Methods

There are several additional Tramp methods available as third-party
packages, mainly for containers like docker, kubernetes, lxc, hdfs,
nspawn, and vagrant.

Multi-Hop Connections

Perhaps you’re at home and need to access a file on work machine
internal.example.com that’s on a non-routable private network, like
a host with 10.*.*.* IP address. This would normally be impos-
sible, but if this host is accessible via ssh from your work desktop
myoffice.example.com, say, then you can use that as a proxy. You
can Tramp into the internal host via a multi-hop filename like this:
/ssh:myoffice.example.com|ssh:internal.example.com:/filename.
You just separate the hops with vertical bars (|). You can mix dif-
ferent methods (e.g. ssh to get to the proxy, but smb to get to the
internal host) and different usernames for each hop.

This implies that you can edit a file on myoffice.example.com as
root by adding a sudo hop at the end (/ssh:myoffice.example.com|sudo::/filename)
and indeed that works fine. Very powerful.

Note that some methods can’t be used in multi-hop pathnames,
e.g. scp; I suspect that external methods are the ones that don’t work.

https://www.gnu.org/software/emacs/manual/html_node/tramp/index.html
https://www.gnu.org/software/emacs/manual/html_node/tramp/index.html

use gnu emacs the plain text computing environment 361

At any rate, Tramp will tell you if you try an unacceptable combina-
tion.

Connection Cleanup

Occasionally you may find that your persistent Tramp connections
are hung. This is most likely to happen if a network connection gets
dropped—say, your WIFI connection gets dropped, or the remote
host is rebooted, or you slept your laptop. In some cases Tramp auto-
matically reconnects for you and you don’t even notice, but if you’re
getting Tramp errors, you can fix them by cleaning up your connec-
tion and starting over.

The first command to try is M-x tramp-cleanup-connection, which
will offer all your remote connections for completion. Pick the one
that’s generating complaints, and now you can reconnect to that host
(say by revisiting the file with C-x C-v (find-alternate-file) or M-x
revert-buffer. If you just like to keep things neat, you can explicitly
clean up connections when you know you’re done with them.

In extreme cases, you can use M-x tramp-cleanup-all-buffers to
clean up all your connections for a totally fresh start. See “Cleanup
remote connections” in the Tramp manual for more information.

References

Free Software Foundation. 2022. TRAMP User Manual. Cambridge,
MA: Free Software Foundation.. Read in Emacs with M-x info-display-manual

RET tramp RET.

https://www.gnu.org/software/emacs/manual/html_node/tramp/Cleanup-remote-connections
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/tramp/Cleanup-remote-connections
https://www.gnu.org/software/emacs/manual/html_node/tramp/Cleanup-remote-connections
https://www.gnu.org/software/emacs/manual/html_node/tramp/Cleanup-remote-connections

Client / Server

In this book I advocate living in Emacs the Lisp Machine: using pure
Elisp applications (like Calc for your calculator, EWW for your web
browser, and Dired for your file manager) and Emacs front-ends to
the external applications you need to use (like VC for your version
control and Ediff for your diffing and merging), But even if you work
this way as much as possible, you’ll inevitably need to occasionally
run an application from a shell in a (non-Emacs) terminal, and some
of these applications will want to invoke “your editor”. For example,
if you use mutt(1) as your mailer289, it will need to invoke your 289 Instead of using Emacs as your

mailer. . .editor every time you compose an email; if you run git(1) in the
terminal for version control290 it will invoke your editor so you can 290 Instead of using Emacs VC or

Magit. . .edit a commit message.
Programs like this typically determine your preferred editor

via the value of the EDITOR environment variable. Yes, you can set
EDITOR=emacs, but this isn’t really right: Emacs is already running,
and has been running since you booted your computer, right? Every
additional time Emacs is fired up, you’re divorced from all the files,
Buffers, and everything else in your main Emacs instance: your state.
Also, any vim(1) user will tell you that Emacs takes too long to start
up (this isn’t really true, but a large and insufficiently lazy Init File
can make it so).

The solution to both of these problems—speed, and isolation from
your state—is to run the Server in your main Emacs instance, and set
your EDITOR to be emacsclient.

emacsclient(1) is a separate program that installs alongside
emacs(1). When you run it, all it does is instantly connect to your
running Server, where all your state is, creating a new Buffer editing
the file that was named on the emacsclient command line. When
you’re done editing this file, you have Emacs tell the emacsclient

that you’re done, and the Client then terminates.
And speaking of state, when you’re in an emacsclient Buffer, you

really are in the Server Emacs: all your state is available: you can
switch Buffers, split Windows, edit other files or read some emails:
anything you like. If you’ve jumped around and have forgotten

https://en.wikipedia.org/wiki/Mutt_(email_client)

364 keith waclena

where your new client Buffer is, you can invoke C-x # (server-
edit) and it will take you back there.

A program like mutt or git will have invoked emacsclient with
the name of a temporary file where you’ll edit your email or git
commit message: this file gets visited in your Server Emacs like any
other file. The external program will be waiting for you to finish
editing before it mails the email or checks-in the commit message.

When you’re done with the edit, you’ll save the Buffer as usual,
and then invoke C-x #. When you invoke this command in a client
Buffer, it tells emacsclient that you’re “done” with this edit: it kills
the Buffer containing the temporary file, and terminates, returning
control to the program that invoked $EDITOR. Note that only the
emacsclient program, not your Emacs Server, terminates: the Server
keeps running, preserving all your state.

A subtlety for Unix users, at least: C-x # tells the emacsclient

to exit successfully (i.e. with a status of zero); on rare occasions you
might want to tell it explicitly to exit unsuccessfully (i.e. with a non-
zero status) so that the program that invoked the Client via $EDITOR

knows you’re unhappy with your edit. So mutt for example would
not send your email291, and git would abort your commit. You can 291 I would hope. . .

do this by invoking, instead of C-x #, M-x server-edit-abort.
If your Emacs Server and your terminal are side by side when the

external program invokes emacsclient, you’ll see the temporary file
suddenly appear in Emacs. If your Emacs is not visible—because it’s
on another desktop, or it’s iconified (minimized) or buried under a
pile of other windows—you’ll have to pull it up to do your editing.
You can instead arrange for the emacsclient to open up a new Frame
right in front of you; see below.

It’s not only programs using $EDITOR that can invoke emacsclient—
you can invoke it explicitly yourself.292 Invoking it with a filename, 292 See Edit, Compile, Run Cycle.

say:

emacsclient foo.c

will visit foo.c in the Server. This time it’s your shell that’s wait-
ing for emacsclient to terminate. You’ll notice that, in your shell,
emacsclient has printed a message and your shell is waiting for it,
and hasn’t yet displayed its next prompt:

$ emacsclient foo.c

Waiting for Emacs...

C-x # will indicate you’re finished and you’ll get your shell prompt
back.

If, in your shell, you invoke emacsclient with several filenames,
then the Client loads all the files into the Server, and C-x # in one of

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 365

those Buffers will kill the Buffer and switch to the next file, which has
its own Client Buffer. When you’ve indicated you’re done with all the
Client Buffers by invoking C-x # in each, the emacsclient terminates
and returns control to the shell. You can edit all these files in any
order you like and flip back and forth between them at will.

emacsclient Operating Modes

emacsclient actually has three distinct modes of operation. The
default, as I’ve described, is to visit a file in an existing Frame of the
Server Emacs.

If you use the -c or --create-frame option, it will instead open a
new graphical Frame managed by your window system, exactly as
if you had invoked C-x 5 f (find-file-other-frame) from inside
Emacs. This means you don’t have to navigate to one of your other
Frames that’s possibly in another desktop or on another monitor.
(This is the option I usually prefer.)

The third possibility is to use the -t (equivalently, the --tty or -
nw) option, which will open a new non-graphical Frame right in your
terminal. This has the advantage of being most intimately connected
to the terminal you’re working in, but all the disadvantages of a non-
graphical Emacs.

There are several other emacsclient options, but most of them are
for people with very special needs. Table 45 lists the only ones I’ve
ever needed. The -n option tells emacsclient not to wait for you to

Option = Long Option Effect
-c --create-frame Create a new graphical frame
-t --tty create a new Terminal frame
-nw --tty . . . the same (“No Window”)
-n --no-wait No wait for C-x #

-a --alternate-editor what to run if no server

Table 45: emacsclient Options

“finish editing”. It just visits the named file in the Server and you
can take all the time you want editing it. This is an asynchronous edit,
unlike the default emacsclient synchronous edit, which leaves the
invoking shell or other program waiting for you to finish. With -n,
you get your shell prompt back immediately. It works in all three op-
erating modes: you can combine it with -c, -t, or neither. Note that
you never want to include this option in your EDITOR environment
variable! It would violate the expectations of mutt, git and friends.

The -a option says what to do if there’s no Emacs server running;
it takes the name of an alternate editor program as a parameter.
The best alternate editor is of a course a non-Server Emacs! So this
command:

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting

366 keith waclena

emacsclient -a emacs foo.c

edits foo.c in the running Server, but if there is no running Server,
edits foo.c in a fresh Emacs (which might start up a Server for next
time—see Starting Up the Server).

I recommend configuring your EDITOR variable in one these forms,
depending on your preference for a graphical client Frame, a non-
graphical (terminal) client Frame, or no new frame (the default). I use
Posix syntax, which will work for bash(1), zsh(1), etc, but maybe
not in exotic shells. This line would go in your ~/.bashrc, ~/.zshrc,
or equivalent.

Graphical Frame export EDITOR="emacsclient -a emacs -c"

Terminal Frame export EDITOR="emacsclient -a emacs -t"

Existing Frame export EDITOR="emacsclient -a emacs"

With -c (or -t) you can fire up emacsclient without giving it a file
name. Maybe you’re working in a terminal and want to jot down a
quick note in a file that’s already in your Server Emacs; emacsclient
-c will open a new client Frame right in front of you; now, you can
switch to the Buffer of interest, and when you’re done, delete the
Frame with C-x 5 0.293 Or leave the Frame open for as long as you 293 You can’t use C-x # because, since

you gave no filename, emacsclient isn’t
waiting for you to finish.

like.

Edit, Compile, Run Cycle

If you haven’t yet completely bought into the new Lisp Machine cult
into which I’m trying to recruit you, you may still be spending a lot
of time in a terminal shell.

emacsclient presents a synchronous mode of editing that allows
you to work in the terminal like a vim user: compile your program,
run emacsclient to fix your code, exit and re-compile.

This is an alternative to doing things the Emacs way, in which,
instead of living in a shell in a terminal, you’re in your Emacs: you
pull up your file with C-x C-f foo.c, compile it with M-x compile,
and jump to your errors with C-x ‘ (next-error). In my opinion, the
Emacs way is superior, but if I haven’t convinced you, Emacs gives
you options.

Remote Server

Another reason to run the Emacs Server is so you can connect to
a remote Emacs running on another computer. This is sort of an
alternative to using Tramp to edit a remote file in your local Emacs:
you can instead connect to the Emacs Server that you’re running on
the remote host, and do your editing there.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation-Mode

use gnu emacs the plain text computing environment 367

Tramp is much lighter-weight and is the way to go if you just
want to edit a given file, especially over a slow, low-bandwidth, or
unreliable network connection. But if what you want is access to
your complete remote Emacs state, then you want a remote Server
connection. The more state you have in the remote Emacs, the more
useful this is. When you connect to the remote Emacs you have all
your Buffers available: all your web browser tabs, your Registers and
Bookmarks, your email, your Dired Buffers complete with all their
marks, and all the rest.

It’s like a plain-text version of Remote Desktop or VNC on a Win-
dows or Mac OS machine, except in my experience it’s much more
responsive, simply because you’re only shipping compact plain text
across the network most of the time, rather than high resolution im-
ages of GUI windows.294 294 N.B. if you have images or PDFs in

the remote Emacs, they’ll work fine too.I use this method to connect to the always-running Emacs on my
work desktop from my home laptop295; this is how I occasionally 295 Which is always running its own

local Emacs with its own Server.work remotely, and during the pandemic of 2020 I worked this way
exclusively for years. I do all my email in Emacs on my work desk-
top, and I’m connected to all the work servers via Tramp from this
Emacs.

There’s really nothing new to learn about using a remote Server:
all you do is run the emacsclient on the remote host via SSH like
this:

ssh -f myoffice.example.com emacsclient -c

If you’re running the X Windows System on a Unix system and you
have enabled SSH to use X Forwarding, this will open a new graph-
ical Frame on your local computer, but the Frame belongs to the
remote Server running on myoffice.example.com and makes all your
state available. Simple as that.

If you don’t have X Forwarding enabled (you could enable it on
the command line with the ssh -X or -Y options), use this form of the
command:

ssh -t myoffice.example.com emacsclient -t

The two -t options give you a terminal Frame instead. If you have
a terrible network connection, the terminal version may be more
responsive; I’ve used this to good effect on long-distance trains for
example, which have typically had very sketchy connectivity. Using
mosh(1) instead of SSH will make for the most robust connection.

You do want to have a few SSH options in your SSH config for
best results. I use:

ForwardX11 yes

ForwardX11Trusted yes

https://en.wikipedia.org/wiki/Remote_desktop_software
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/Mosh_(software)

368 keith waclena

ForwardAgent yes

Compression yes

ServerAliveInterval 120

Starting Up the Server

We’ve talked a lot about the Emacs Client, but how do you start up
the Emacs Server? There are at least three ways.

The --daemon Option

Start your Server by invoking Emacs with the --daemon option. Usu-
ally you arrange for this to happen automatically when you start up
your computer: for Unix users running the X Window System, this
typically means adding the line:

emacs --daemon

to your ~/.xession or ~/.xinitrc file.
When you start up Emacs this way, the usual initial Frame with its

splash screen won’t appear. You’ll need to use the emacsclient com-
mand to connect to the Server and open up a Frame. If you always
want an initial Frame to appear first thing, you can add an invocation
of emacsclient -c in your ~/.xsession.

Have the OS Start the Server

If you’re on a Unix OS that runs Systemd, you can have it start up
your Emacs Server for you when you log in. The main advantage
of this is that Systemd will restart your Emacs if it gets killed. See
“Emacs Server” in the Emacs manual.

Start the Daemon in Your Init File

You can instead start up the Server from your Init File. This means
that whenever you fire up an Emacs, it will ensure that the Server is
started for you. This is the method I use. This Init File snippet starts
up the Server unless one is already running.296 296 It’s possible but unconventional

to run multiple servers on the same
machine. See “Emacs Server” in the
Emacs manual.

(require 'server)

(if (fboundp 'server-running-p) ; new in v28

(unless (server-running-p)

(server-start))

;; server-start will fail if the server is already running...

(ignore-errors (server-start)))

Note that if you’re not a regular user of the Server, you can also fire it
up interactively on special occasions with M-x server-start.

https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/Systemd
https://www.gnu.org/software/emacs/manual/html_node/emacs/Emacs-Server
https://www.gnu.org/software/emacs/manual/html_node/emacs/Emacs-Server
https://www.gnu.org/software/emacs/manual/html_node/emacs/Emacs-Server

use gnu emacs the plain text computing environment 369

Shutting Down the Server

There’s no reason in normal use to explicitly shut down the Server;
just let it run until you’re done with Emacsing.297 297 You can force a shutdown with M-x

server-force-delete if you really want
to.

But the usual command for exiting Emacs, C-x C-c (save-buffers-
kill-terminal), is a little more subtle when you’re running the
Server. If you give that command in a Client Frame (as created by
emacsclient -c or emacsclient -t), it doesn’t exit your Emacs:
rather, it offers to save your Buffers and then acts exactly like C-x #,
informing the emacsclient that you’re done editing, and then ter-
minating the Client, leaving the Server running. You can use this
instead of C-x # if you like, though I think developing the C-x #

habit is better.
If you start Emacs with (server-start) and are in the original

server Frame (not in a Client Frame), C-x C-c will exit your Emacs,
though in addition to the usual cautions, if there are any attached
Clients, you’ll be asked:

This Emacs session has clients; exit anyway? (yes or no)

Note that if you start Emacs with --daemon, then all Frames are
client Frames, so C-x C-c will never terminate your Emacs! With
--daemon, you need to use M-x save-buffers-kill-emacs to do so.

Troubleshooting

A quick way to see if your local Emacs Server is happy is to run this
command in a shell:

emacsclient --eval "(print :ok)"

If you get a “:ok” in response, the Server is running and all is well.
You can check on a remote Server by ssh’ing to the remote host

and running the same command there. Due to shell quoting issues,
this obvious shortcut won’t work:

Incorrect!
ssh myoffice.example.com emacsclient --eval "(print :ok)"

You need an extra level of shell quoting:

ssh myoffice.example.com emacsclient --eval '"(print :ok)"'

In either case, if the Server’s not running, you’ll get some message
like:

emacsclient: can't find socket; have you started the server?

Very occasionally, you might try to initiate a connection to a re-
mote server and find that emacsclient just hangs! Before you do

https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting

370 keith waclena

anything as extreme as ssh myoffice.example.com pkill emacs, try
this command:

ssh myoffice.example.com emacsclient --eval '"(top-level)"'

Occasionally you’ll have left your remote Emacs in the middle of
waiting for you to type a response in the Minibuffer or the like,
which can cause your emacsclient connection to hang; invoking
top-level can abort this.

Midnight Mode

When you’re running the Server, you tend to have a very long-
running Emacs, which can accumulate a lot of Buffers.298 (You can 298 If you live in Emacs the way I recom-

mend, this can happen even if you don’t
run the Server.

say M-x emacs-uptime to see how long your Emacs has been running.)
Assuming you’re not out of space from visiting enormous files and
never killing their Buffers, there’s nothing wrong with this per se.
However, you might consider 100 or more old Buffers to be too much
clutter in your Buffer Menu or your Completion candidates. If so,
midnight-mode to the rescue. If you invoke it in your Init File:

(midnight-mode +1)

then every night at midnight, it kills all the Buffers that are more
than three days old (for file-visiting Buffers, only if they are unmodi-
fied of course). Three days is just the default, and there are a number
of exceptions. You can readily exclude Buffers that you never want
it to clean up, and force it to always kill Buffers that annoy you. It’s
very customizable, so if you use it, be sure to investigate it by invok-
ing M-x customize-group RET midnight.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

Ubiquitous Capture & Note Taking

For all Emacs users, one of the most important tasks must surely be
note taking. Note-taking styles are very idiosyncratic, and there are
40 or so third-party packages designed for note-taking, from simple
editing modes, through interfaces to web-based “note services”, to
complex Zettelkasten implementations, and the awesomeness of
Emacs’s own all-powerful Org Mode.

But regardless of how you edit, organize, and search your notes,
your primary task is to actually take them without getting distracted
from the task at hand. An idea occurs to you, possibly completely
unrelated to your current task, and you need to just quickly make a
note of it, to be organized—fleshed out, tagged, categorized, linked
or whatever is your process—later, so that you can get back to your
current task with minimal distraction.

This is called ubiquitous capture by some: ubiquitous because you
might take any note anywhere and anytime, and capture meaning a
bare-bones jotting-down.

Emacs has two main subsystems for ubiquitous capture, which
you might combine.

Remember

Remember is the simplest Emacs subsystem for ubiquitous capture.
When an idea occurs to you, just say M-x remember, and type a line
or three in the *Remember* buffer that pops up, and then issue the
(nearly) universal Emacs “I’m finished with that” keystroke, C-c C-c

(remember-finalize).
That’s it! You’re back at whatever you were doing when the idea

occurred to you, your note has been safely socked away, and you
can pull it up later to organize it, flesh it out, etc. The *Remember*
Buffer is in remember-mode, but that Major Mode only has one other
command: C-c C-k (remember-destroy), which lets you abort your
note-taking if you’ve decided you really don’t have much of an idea
after all.

But where did your note go? The default destination is just to

https://en.wikipedia.org/wiki/Zettelkasten
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

372 keith waclena

append it to the file notes in your user-emacs-directory—on Unix
systems, that defaults to ~/.emacs.d/notes. Wherever it is, you can
pull up that file with M-x remember-notes.

Each time you capture a new note, it’s appended to the end of the
file with some metadata and an annotation. Here’s what a note might
look like:

** Tue Feb 14 16:10:56 2023 (new emacs command)

new emacs command

it needs to do something cool!

~/src/tint/lib/types.ml

I didn’t type the filename at the bottom; remember added that for me:
it’s the name of the file I was editing when I took the note. This can
be very useful, and you can easily jump back to that location via M-x

ffap (see Find File at Point). But if your idea is unrelated to your
location, you can just delete that line, as I will do in this case.

The first line of your note (I typed “new emacs command”) is au-
tomatically prefixed with a timestamp, and the two leading asterisks
are the syntax for a new subheading in Org Mode, which would be
a good candidate for the Buffer’s Major Mode. You can Customize
remember-notes-initial-major-mode to make this so.

I recommend adding a level-1 headline before your new note, so
your notes file looks something like this:

* INCOMING

** Tue Feb 14 16:10:56 2023 (new emacs command)

new emacs command

it needs to do something cool!

Since M-x remember always appends a note with a level-2 headline, all
new notes end up under the INCOMING category, as a reminder that
you want to file them elsewhere in fleshed-out form, perhaps just in
the same file but under some preceding level-1 headline; the result of
that might look like:

* EMACS IDEAS

** Tue Feb 14 16:10:56 2023 (new emacs command)

Add to dired-mode; needs a good key binding...

(defun my-dired-jump-to-dir-of-file ()

"Jump to directory of symlink target at point."

(interactive)

(dired (file-name-directory (file-truename (dired-get-filename)))))

* INCOMING

https://www.gnu.org/software/emacs/manual/html_node/emacs/FFAP

use gnu emacs the plain text computing environment 373

Other Entry Points

If you give M-x remember a Prefix Arg, it will insert the contents of
the Region in the *Remember* Buffer for you. You can instead use M-x

remember-clipboard to insert the contents of the system clipboard
as the initial contents; this is great for saving things from an external
web browser or other non-Emacs application.

You may want to bind remember to a key; I use C-c r myself.

(global-set-key (kbd "C-c r") 'remember)

This extremely simple note-taking system—just one easily acces-
sible file in Org Mode format—may be all you require. But if you
need something more, Remember can still serve as your ubiquitous-
capture front-end to a more complex system. You can also store notes
in multiple files named with a timestamp (so you can have separate
files for each day, or week, month, or year); add entries to your Di-
ary when you take a note; or store notes as Email messages (some
people like to use an Emacs email client to manage their notes); see
“Backends” in the Remember manual.

org-capture

The main alternative to the Remember subsystem is Org Capture (see
“Capture” in the Org manual), which fully integrates the Remember
workflow into Org Mode. In addition to just providing direct access
to all of Org’s powerful facilities299 in your notes (especially easy 299 Such as rich markup, hyperlinks,

attachments. tagging, TODOs, agendas,
etc. . .

refiling), it supports an extremely useful templating system that lets
you choose, with a keystroke, a location for a given type of note and
distinct initial formats and annotation types for each.

If you’re ready to make the life-altering deep dive into Org Mode,
I highly recommend using Org Capture for your ubiquitous capture
needs.

https://www.gnu.org/software/emacs/manual/html_node/remember/Backends
https://www.gnu.org/software/emacs/manual/html_node/org/Capture
https://www.gnu.org/software/emacs/manual/html_node/org/Refile-and-Copy
https://www.gnu.org/software/emacs/manual/html_node/org/Capture-templates

Org Mode

Sitting on top of Emacs is Org mode. It is the thing which made irrele-
vant my search for the perfect task management software. Like Emacs,
you can mold it into whatever workflow works best for you at the time.
Later, I discovered it is also a wonderful publishing platform [. . .]. I
have used it to author countless technical specifications, my blog, and
all of my books. In “Concurrency in Go”, it allowed me to execute the
code snippets embedded in the book—a form of literate programming.
This ensured that the code people are reading, the output from that
code, and the code exported into the book’s repository all have the
same provenance. — Katherine Cox-Buday / writer, computer scientist

Figure 49: Editing This Book in Org
Mode with Babel

It all began with Outline Mode, a simple Major Mode for editing
outlines with nested headings, which had been in GNU Emacs since
the very beginning. Carsten Dominik wanted something more:

Org was born in 2003, out of frustration over the user interface of the
Emacs Outline mode. I was trying to organize my notes and projects,
and using Emacs seemed to be the natural way to go. However, having
to remember eleven different commands with two or three keys per
command, only to hide and show parts of the outline tree, that seemed
entirely unacceptable to me. Also, when using outlines to take notes, I
constantly wanted to restructure the tree, organizing it parallel to my
thoughts and plans.

https://usesthis.com/interviews/katherine.cox-buday/

376 keith waclena

So he fixed that problem; but soon he started adding more features to
it:

As this environment became comfortable for project planning, the next
step was adding TODO entries, basic timestamps, and table support.
These areas highlighted the two main goals that Org still has today: to
be a new, outline-based, plain text mode with innovative and intuitive
editing features, and to incorporate project planning functionality
directly into a notes file.

org-mode is like outline-mode on steroids. Starting from outline-

mode’s simple syntax, it adds metadata (such as a notion of author
and title), markup (italics, bold, tables), hypertext links, and the
ability to export your text as HTML, PDF, and more.300 It’s very 300 This book is an Org Mode document.

easy to use at this level and should be your choice for most of your
“plain text” files.

But this description doesn’t come close to doing Org justice: Org
is the subject of a 23,603-line manual and also incorporates calen-
daring, agendas, database, spreadsheets, literate programming, and
metaprogramming.

While Org is huge and complex and deserving of its own book as
big as this one, it’s actually extremely easy to use as a better text-
mode or outline-mode, as a better and more Emacs-native Mark-
down,301 and to mix in extra features as you feel the need for them. 301 And you can always export Org

to Markdown if you need to talk to
outsiders.

Next thing you know, you can call yourself an Org user.
So all I’m going to try to do in this chapter is give an introduction

to the basic Org rich markup language and how to publish simple
documents, and then provide an orientation and summary of the
other major Org facilities and how to find out more about them.

Org as a Simple Outliner

Headings begin with a sequence of asterisks: one asterisk is a top-
level heading, two is a subheading, and so on. More asterisks marks
a heading as being on a lower level, and so we have a tree structure
(imagine paragraphs of text after each of the headings):

* Folding Text

This chapter is about folding text.

** Markup-Based Folding

*** Outline Mode

*** Org Mode

** Implicit Folding

*** Selective Display

*** Hide / Show Minor Mode

*** 3rd-Party

**** yafolding

https://www.gnu.org/software/emacs/manual/html_node/org/index.html
https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Markdown

use gnu emacs the plain text computing environment 377

Org calls these heading lines headlines. Both lower-level headlines and
non-headline text following a headline302 belong to that headline. 302 Like “This chapter is about folding

text.”Since * Folding Text in the above example is the highest-level head-
line, everything after it (up to the next level-1 headline, if any) belongs
to it. ** Markup-Based Folding contains the next two lower-level
headlines, but not ** Implicit Folding, which is on the same level.

In Org Mode, hitting TAB (org-cycle) on the first line will fold all
the text belonging to it, leaving just one visible line:

* Folding Text...

Note the ellipsis at the end of the line, which indicates the presence
of hidden folded text under this headline (the dots are just for dis-
play and are not actually actually added to your text).

Another TAB will reveal all the next lower level headlines and any
contained text:

* Folding Text

This chapter is about folding text.

** Markup-Based Folding...

** Implicit Folding...

You can see that the level-2 headlines remain folded.
A third TAB unfolds everything underneath. Finally, a fourth TAB

will fold everything under * Folding Text again, starting the cycle
over. You can fold and unfold starting on any headline, not just at the
highest level.

As with all the Emacs text folding subsystems, the invisible text is
still there: you can search into it, and if you copy a region containing
the folded text, the copied text contains all the folded text as well; if
you save the Buffer when it’s folded, you are of course saving all the
folded text as well (the next time you open the file, all your text will
be there, unfolded).

The tripartite cycling of TAB has a global (i.e. whole Buffer) coun-
terpart in S-TAB (org-shifttab), which does the same three lev-
els of unfolding and folding but applied to all the headlines in the
Buffer simultaneously. So the book you’re reading, which is a single
21,926-line Org Mode document, can be folded with one S-TAB to fit
completely in half a screen of my Emacs Window.

See “Headlines” in the Org manual and “Visibility Cycling” in the
Org manual for more information.

Org’s Rich Markup

There are a number of lightweight markup languages designed as so-
called humane alternatives to heavyweight markup languages like

https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Mode
https://www.gnu.org/software/emacs/manual/html_node/org/Headlines
https://www.gnu.org/software/emacs/manual/html_node/org/Visibility-Cycling
https://en.wikipedia.org/wiki/Lightweight_markup_language

378 keith waclena

XML, HTML, TEX and LATEX, and Troff: they are easier to learn and
easier to type, and more readable—that is, the markup is meant to be
suggestive of a typeset equivalent.

Org’s markup language is comparable to others such as Mark-
down, reStructuredText, or AsciiDoc, but I would claim it’s more
powerful—especially for an Emacs user. Let’s take a look at Org
markup side-by-side with the published result, keeping in mind that
there’s more303 to many of these constructs. 303 A lot more in the case of, for exam-

ple, the spreadsheet. . .The headlines demonstrated above are part of Org’s markup,
and much of the text between the headlines can be thought of as
paragraphs, simply separated from each other by blank lines. Within
the text, there are a number of ways of indicating emphasis:

Emphasis is indicated like so: /italic/,

bold, _underlined_, =verbatim=,

~code~, and +strike-through+; other

markup syntax is ignored in verbatim and

code text, and is typically published in

a monospaced font. You can escape a

markup syntax character with a Unicode

zero-width space (codepoint 2008).

Emphasis is indicated like so: italic, bold,
underlined, verbatim, code, and strike-through;
other markup syntax is ignored in verbatim
and code text, and is typically published in a
monospaced font. You can escape a markup syn-
tax character with a Unicode zero-width space
(codepoint 2008).

A horizontal rule, spanning a published

page, is a line with 5 or more hyphens:

A horizontal rule, spanning a published page, is a
line with 5 or more hyphens:

Subscripts are indicated with an

underscore, as in H_2O, and superscripts

with a caret, as in 5^2 = 25. -- is an

en-dash and --- an em-dash. Org

supports over 400 named "entities" that

provide a convenient way to enter

special symbols like \lambda and

\exists.

Subscripts are indicated with an underscore, as in
H2O, and superscripts with a caret, as in 5

2 = 25. –
is an en-dash and — an em-dash. Org supports over
400 named “entities” that provide a convenient way
to enter special symbols like λ and ∃.

use gnu emacs the plain text computing environment 379

There are several large-scale

structures. A simple unnumbered list

looks like this:

- tables

- verse

- quote

- centered

- example

A keystroke can convert it to a numbered

list in various formats; =org-mode= will

recompute the numbers for you if you

move, delete, or add items.

There are several large-scale structures. A simple
unnumbered list looks like this:

• tables

• verse

• quote

• centered

• example

A keystroke can convert it to a numbered list
in various formats; org-mode will recompute the
numbers for you if you move, delete, or add items.

A block quote looks like:

#+begin_quote

As we enjoy great Advantages from the

Inventions of others we should be

glad of an Opportunity to serve

others by any Invention of ours, and

this we should do freely and

generously. --- Benjamin Franklin

#+end_quote

A block quote looks like:

As we enjoy great Advantages from the Inventions
of others we should be glad of an Opportunity
to serve others by any Invention of ours, and this
we should do freely and generously. — Benjamin
Franklin

and verse (or just anything where you

want unfilled lines) looks like this:

#+begin_verse

We shall have to evolve

problem solvers galore

since each problem we solve

creates ten problems more.

--- Piet Hein

#+end_verse

and verse (or just anything where you want unfilled
lines) looks like this:

We shall have to evolve
problem solvers galore
since each problem we solve
creates ten problems more.
— Piet Hein

380 keith waclena

Literal examples in which markup doesn't

apply can be done like this:

#+begin_example

Athens -> Piraeus

London -> Thamesport

#+end_example

Example blocks are published in a

monospace font. Short one-line examples

can be done this way:

: Rome -> Civitavecchia

Literal examples in which markup doesn’t apply
can be done like this:

Athens -> Piraeus

London -> Thamesport

Example blocks are published in a monospace font.
Short one-line examples can be done this way:

Rome -> Civitavecchia

Source code blocks can be used for any

programming or markup language Emacs

knows about:

#+begin_src emacs-lisp

(with-demoted-errors "%s"

(add-to-list

'default-frame-alist

'(font . "Helvetica 12")))

#+end_src

These blocks can be colorized in your

Org Mode Buffer, and also when

published. They can also be evaluated

and used for metaprogramming and

literate programming.

Source code blocks can be used for any program-
ming or markup language Emacs knows about:

(with-demoted-errors "%s"

(add-to-list

'default-frame-alist

'(font . "Helvetica 12")))

These blocks can be colorized in your Org Mode
Buffer, and also when published. They can also
be evaluated and used for metaprogramming and
literate programming.

Org supports hyperlinks that are

"clickable" in your Org Buffer and are

rendered as links when you publish your

document. Simple URLs display as

themselves --- https://www.gnu.org/ ---

or you can wrap them in

[[https://www.gnu.org/][a description]].

Internal links allow you

jump between places in your document,

and many specialized Emacs-only link

types are supported (you can link to

email messages, attachments, Info manual

pages, etc).

Org supports hyperlinks that are “clickable” in your
Org Buffer and are rendered as links when you
publish your document. Simple URLs display as
themselves — https://www.gnu.org/ — or you can
wrap them in a description. Internal links allow you
jump between places in your document, and many
specialized Emacs-only link types are supported
(you can link to email messages, attachments, Info
manual pages, etc).

https://www.gnu.org/
https://www.gnu.org/

use gnu emacs the plain text computing environment 381

Org has phenomenal support for tables

(including spreadsheets embedded in

your document); this easy-to-type table:

| Language | Files

|-

| OCaml | 2175

| Emacs Lisp | 156

| Tcl | 13616

when published will look beautiful,

and a keystroke in your Org Buffer

(totally optional) will align the

columns for easy reading while you edit:

| Language | Files |

|------------+-------|

| OCaml | 2175 |

| Emacs Lisp | 156 |

| Tcl | 13616 |

Org has phenomenal support for tables (including
spreadsheets embedded in your document); this
easy-to-type table:

Language Files
OCaml 2175

Emacs Lisp 156

Tcl 13616

when published will look beautiful, and a keystroke
in your Org Buffer (totally optional) will align the
columns for easy reading while you edit:

Language Files
OCaml 2175

Emacs Lisp 156

Tcl 13616

I can sum up the files column using the

spreadsheet (I never typed the 15947):

| Language | Files |

|------------+-------|

| OCaml | 2175 |

| Emacs Lisp | 156 |

| Tcl | 13616 |

|------------+-------|

| | 15947 |

#+TBLFM: @5$2=vsum(@I..@II)

A simple =C-u C-c C-c= anywhere in the

table will update all formulas; the

formulas will also be re-computed upon

publication.

I can sum up the files column using the spreadsheet
(I never typed the 15947):

Language Files
OCaml 2175

Emacs Lisp 156

Tcl 13616

15947

A simple C-u C-c C-c anywhere in the table will
update all formulas; the formulas will also be re-
computed upon publication.

#+MACRO: uofc The University of Chicago

You can define a /macro/ like the line

above, and refer to it like this:

{{{uofc}}}. Macros can also take

parameters, as in the date below. There

are several predefined macros that can

expand thusly: {{{author}}}, {{{date(%Y)}}}.

You can define a macro like the line above, and refer
to it like this: The University of Chicago. Macros
can also take parameters, as in the date below.
There are several predefined macros that can ex-
pand thusly: Keith Waclena, 2023.

382 keith waclena

#+LINK: gnu https://www.gnu.org

There's a special sort of macro for

URLs. After defining the line above.

you can use it repeatedly in links like

these: go to the [[gnu][GNU website]] and

[[gnu:/software/emacs][Emacs website]].

There’s a special sort of macro for URLs. After
defining the line above. you can use it repeatedly in
links like these: go to the GNU website and Emacs
website.

Inline images can also be displayed in

the Org Buffer, and will appear when

published; they can be given captions,

and can be linked to:

#+ATTR_LATEX: :width 0.1\textwidth

#+ATTR_HTML: :width 50px

[[./images/feed-icon.png]]

Captions can be added to other

structures too (like source blocks).

Inline images can also be displayed in the Org
Buffer, and will appear when published; they can
be given captions, and can be linked to:

Captions can be added to other structures too (like
source blocks).

Comments are not exported to your

published document. You can comment out

a line easily.

TODO say something interesting

Alternatively, you can use a block

comment to do many lines at once (and

block comments can be folded).

#+begin_comment

Say several

interesting

things,

#+end_comment

You can also add a =COMMENT= keyword to a

headline, and none of the text under it

(including subheads) will be exported.

* COMMENT This Isn't Finished Yet

Write this section!

Comments are not exported to your published doc-
ument. You can comment out a line easily.

Alternatively, you can use a block comment to
do many lines at once (and block comments can be
folded).

You can also add a COMMENT keyword to a head-
line, and none of the text under it (including sub-
heads) will be exported.

See “Markup for Rich Contents” in the Org manual, “Hyperlinks”
in the Org manual, and “Tables” in the Org manual for more informa-
tion.

Simple Publishing (Exporting)

Now that you know how to use headlines to structure your text, and
markup to format it, you can very easily publish your document in
any of several formats.

https://www.gnu.org
https://www.gnu.org/software/emacs
https://www.gnu.org/software/emacs
https://www.gnu.org/software/emacs/manual/html_node/org/Markup-for-Rich-Contents
https://www.gnu.org/software/emacs/manual/html_node/org/Hyperlinks
https://www.gnu.org/software/emacs/manual/html_node/org/Tables

use gnu emacs the plain text computing environment 383

You probably want to add some metadata, and perhaps tweak
some publishing options (which Org calls export options); your first
published document could be as simple as this:

#+TITLE: London Fog

#+AUTHOR: Joe Blow

#+EMAIL: joe@example.com

#+OPTIONS: toc:nil num:nil tags:nil

As Dickens said in [[https://www.gutenberg.org/ebooks/1023][/Bleak

House/]], "Fog everywhere. Fog up the river, where it flows among

green aits and meadows; fog down the river, where it rolls defiled

among the tiers of shipping and the waterside pollutions of a great

(and dirty) city."

See the Org manual for all the metadata possibilities. For most sim-
ple, memo-like documents, I usually use these options; changing any
them from nil to t will toggle their meaning:

toc:nil don’t generate a table of contents

num:nil don’t number headlines

tags:nil don’t include tags

There are couple dozen more of these.
You can export your published document via any of several back-

ends; the defaults include:

LATEX for a PDF or other printed formats

Beamer for a PDF that functions like a slide deck (e.g., to replace
PowerPoint or Google Slides)

HTML for web publishing; you can upload the resulting .html file to
your website or blog304 304 Just like I’ve done with this book.

EPUB for an ebook suitable for your e-reader

ODT for an OpenDocument Text file (suitable for people using
LibreOffice or MS Word)

Markdown for a Markdown file suitable for uploading to Github,
perhaps

Texinfo for a document that’s readable in Emacs via Info

Man Page for a Unix manual page

Plain Text for a neat-looking plain text file with filled paragraphs, etc

https://www.gnu.org/software/emacs/manual/html_node/org/Export-Settings
https://en.wikipedia.org/wiki/Beamer_(LaTeX)
https://en.wikipedia.org/wiki/EPUB
https://en.wikipedia.org/wiki/OpenDocument

384 keith waclena

There are 46 other backends such as AsciiDoc and reStructured-
Text, and since one of them is pandoc, you can use that to export to
even more formats.

For HTML exports, Org provides default CSS styling inline,
but you can override it with your own, and there are many 3rd-
party stylesheets you can choose from; I’m currently using Fabrice
Niessen’s ReadTheOrg for the HTML version of this book. For LATEX
exports, you can use any LATEX class you like (there are thousands); I
use the tufte-latex tuftebook class for the PDF version of this book.

See “Exporting” in the Org manual for more information.

The Fancy Bits

Let’s take a peek at some of Org’s other offerings.

Tagging

There are several mechanisms for organizing your information. First
and foremost are tags, which are simply sets of keywords that can be
assigned to any headline. This headline has two tags, foo and bar:

* A Level 1 Headline :foo:bar:

C-c C-c on a headline makes it easy to add or edit tags with Com-
pletion.

Tags are used to classify and categorize your headlines. They
form an inheritance tree: that is, every headline is considered to have
its explicit tags, and, implicitly, all the tags on all the higher-level
headlines that contain it. For example, the headlines below that have
been tagged with lisp are Lisp (explicit), Emacs Lisp, and Common
Lisp (both implicit), and the headlines tagged with oo are Common
Lisp, OCaml, and Java; functional applies to all of the headlines
except Java:

* Lisp :lisp:functional:

** Emacs Lisp

** Common Lisp :oo:

* ML :ml:functional:

** Standard ML

** OCaml :oo:

* Java :oo:

Tags are useful just as visual indications, but you can also use them
to tie together many headlines across many files in the Agenda.

You can use Org’s sparse trees to fold an entire Buffer so that only
headlines with certain combinations of tags are visible, and you can
then do an export that’s limited to the visible parts of the Buffer.

https://github.com/jgm/pandoc
http://www.pirilampo.org/
http://www.pirilampo.org/
https://github.com/fniessen/org-html-themes#readtheorg
https://www.lib.uchicago.edu/keith/emacs/htmlversion
https://www.ctan.org/pkg/tufte-latex
https://www.gnu.org/software/emacs/manual/html_node/org/Exporting

use gnu emacs the plain text computing environment 385

See “Tags” in the Org manual for more information.

Hyperlinks, Attachments, and Drawers

In addition to storing information directly under a headline in the
form of paragraphs of text (perhaps recursively including a tree of
sub-headlines), you can use Org’s hyperlinks to link to other loca-
tions in your file or in other files (local or remote), on the web, in
your email,305 in your address book, and more. You can also attach 305 If you read your Email in Emacs. . .

other files to your headline; attached files are easily managed with
Org’s Attachment Dispatcher: it organizes them in subdirectories
related to your headlines, the most important features being that
large data files and binary files are stored outside your document
file; that you don’t need to think about file- or directory names for
the attached files; and that you can move headlines around without
worrying about losing track of the associated files. Org’s drawers are
sort of like lightweight attachments that live directly in your file, but
are kept hidden away (no matter how big they actually are) until you
need to see them.

See “Hyperlinks” in the Org manual, “Attachments” in the Org
manual, and “Drawers” in the Org manual for more information.

Refiling and Archiving

Org makes it easy to refile your valuable information in controlled
ways within a file, or between files, without using error-prone cutting
and pasting. A keystroke (C-c C-w (org-refile)) will move (or copy)
the current headline (or Region) to be under some other headline
(the target), chosen with Completion. There’s a powerful system for
identifying targets, and they can be in other files as well.

A specialized version of Refiling is archiving. When you’re in some
sense “done” with a headline (which may represent a task), C-c $

(org-archive-subtree) will refile it to the file’s archive file. Exactly
where and how archived headlines are stored is highly customiz-
able, and you can choose extra information that gets stored with
the archived item (the date of archiving, where it came from, etc).
Archiving lets you keep your files lean and mean, but you can still
find all your old information by searching your archive files.

See “Refile and Copy” in the Org manual and “Archiving” in the
Org manual for more information.

The Agenda

The Agenda is Org’s calendar, scheduler, project planner, TODO list,
and search interface. It’s job is to gather information of interest from

https://www.gnu.org/software/emacs/manual/html_node/org/Tags
https://www.gnu.org/software/emacs/manual/html_node/org/Hyperlinks
https://www.gnu.org/software/emacs/manual/html_node/org/Attachments
https://www.gnu.org/software/emacs/manual/html_node/org/Drawers
https://www.gnu.org/software/emacs/manual/html_node/org/Refile-and-Copy
https://www.gnu.org/software/emacs/manual/html_node/org/Archiving

386 keith waclena

a selection of all your Org files and display an overview of them in a
special sort of dashboard Buffer that also makes it easy to jump to an
item, or directly act on it right there in the view. You define the set
of files that comprise the Agenda, via the Customize Facility—if you
add a directory, all its files are included, and you can also add and
remove files with a keystroke as you work.

See “Agenda Views” in the Org manual for more information.

Timestamps

You can use Org’s Agenda to keep track of appointments, due dates,
and the like. It’s a much more powerful alternative to the standard
Calendar.

A headline can have any of several types of timestamps associated
with it. These are specially formatted strings that might look like
this:

<2023-02-27 Mon 10:00-10:30>

and are easily created with C-c . (org-time-stamp) and several
other keystrokes that differentiate between scheduled times, dead-
lines, and other types. Existing timestamps support many convenient
commands to tweak the date, jump to the Agenda for that date, and
more.

Org also has powerful facilities for clocking and logging how
much time you spend on work tasks, estimating how much time a
project will take, and generating reports based on all this.

Here’s an example Agenda dashboard generated from time-
stamped entries across all my Agenda files and my Diary; I’ve also
configured it to display holidays (it’s actually quite colorful):

https://www.gnu.org/software/emacs/manual/html_node/org/Agenda-Views

use gnu emacs the plain text computing environment 387

Week-agenda (W14):

Monday 3 April 2023 W14

agenda: Scheduled: TODO BUGFIX

Tuesday 4 April 2023

agenda: 13:20-14:30 APPT Doctor

Diary: 15:30-16:30 D Meeting (Library JRL-220L)

Wednesday 5 April 2023

Diary: 14:30-15:30 Sysadmin Meeting

Diary: 17:00-19:00 Study Group

Thursday 6 April 2023

Diary: Joe Blow's Birthday: 36 years old

Diary: Passover

Friday 7 April 2023

Diary: Good Friday

Saturday 8 April 2023

Sunday 9 April 2023

Diary: Easter Sunday

The Agenda Buffer has 150+ handy commands for doing things
like shifting the view from date to date and between daily, weekly,
monthly, and annual views; directly killing, rescheduling, refiling,
archiving, and adding new entries; changing priorities; filtering en-
tries; tagging and untagging; narrowing the Agenda to certain files or
Buffers; clocking in and out of tasks; searching and Occuring; and do-
ing many of these actions to several marked entries at once. It would
all be overwhelming, but I don’t think anybody needs every one of
these facilities; I only use a small subset and can barely guess what
some of the others are for!

See “Timestamps” in the Org manual for more information.

TODO Lists

When you’re taking notes, you can mark any headline as a TODO
item with C-c C-t (org-todo). After C-c C-t a “New Project” head-
line will look like:

** TODO New Project

You could just type in “TODO”, but C-c C-t is smart and each invo-
cation will cycle through your TODO keywords. The default sequence
of TODO keywords is simply TODO and DONE, but you can define
your own sets on a file-by-file basis, perhaps: TODO, ACTIVE, DONE,
DELEGATED, and CANCELED. TODO states are distinguished between
those that need action and those that don’t or are in some sense fin-
ished; here perhaps TODO and ACTIVE need action and the remainder
don’t. C-c C-t cycles through these states in order.

When you transition an item into a finished state (like DONE,
DELEGATED, or CANCELED here), Org can log a timestamp, prompt you
for a note, and more.

https://www.gnu.org/software/emacs/manual/html_node/org/Timestamps
https://www.gnu.org/software/emacs/manual/html_node/emacs/Org-Organizer

388 keith waclena

The Agenda can display all your TODO items with a keystroke,
filtered in a variety of ways; here’s an Agenda TODO dashboard for
one of my software projects:

Headlines with TAGS match: tint

Press ‘C-u r’ to search again

refer: TODO autocorrect for tint :bug:tint:

refer: DONE implement -b and -e after Tint.eval is done :bug:tint:

refer: DONE tint -b and -e should print result! :bug:tint:

refer: TODO option to terminate on tint error :feature:tint:

refer: TODO if any tint errors, set exit status :feature:tint:

refer: TODO Fred’s request: :feature:tint:

refer: TODO fs and vs should respect order of indices :feature:tint:

See “TODO Items” in the Org manual for more information.

Spreadsheets

Org’s table editor is great for producing beautiful tables in published
output, but its tables are also useful for maintaining and manipulat-
ing data, like you might do with a spreadsheet program—especially
since Org’s tables have spreadsheet capabilities.

| Language | Files |

|------------+-------|

| OCaml | 2175 |

| Emacs Lisp | 156 |

| Tcl | 13616 |

|------------+-------|

| | 15947 |

#+TBLFM: @5$2=vsum(@I..@II)

A spreadsheet is just a table with special lines at the bottom that
store all the formulas. Of course you don’t have to enter or edit this
line manually306; it’s maintained for you by Org. As you navigate 306 Though you can if you want, thanks

to plain text.from cell to cell in the table, a keystroke lets you enter a formula for
the cell or for a whole column. Formulas support simple arithmetic,
powerful functions from Calc, and even full-blown Elisp expressions.

Whenever you change any of the data or formulas in your table,
you can recalculate the whole spreadsheet with C-u C-c C-c (or just
one cell with a simple C-c C-c).307 307 You can also turn on automatic

recalculation if you like.When your spreadsheet gets complex, you can toggle on the for-
mula editor, which makes it clear which formulas apply to which cells
and allows easy editing of them. And when your spreadsheet is re-
ally complex and you’re getting errors, you can turn on the formula
debugger to see what’s going on.

See “The Spreadsheet” in the Org manual for more information.

https://www.gnu.org/software/emacs/manual/html_node/org/TODO-Items
https://www.gnu.org/software/emacs/manual/html_node/org/Tables
https://en.wikipedia.org/wiki/Spreadsheet
https://www.gnu.org/software/emacs/manual/html_node/org/The-Spreadsheet

use gnu emacs the plain text computing environment 389

Slideshow Presentations

I use Org to do all my presentations, instead of something like Pow-
erPoint (I export to Beamer). See Slideshow Presentations for more
information.

Literate Programming

Donald Knuth invented literate programming in 1984; he wanted to
write computer programs in such a way that the code, along with
what would normally be explanatory comments, could be read as
literature. He implemented his TEX typesetting system this way,
resulting in a beautiful 483 page book describing this large and com-
plex program. The idea is that the source code of a literate program
can be processed in two ways: it can be tangled to generate the source
code of the program, which can be compiled or evaluated, or it can
be woven to generate code for typesetting software to produce a book,
article, or web page.

One of the tricky things about this is that a given programming
language may require that parts of the program appear in a certain
order, to make the compiler happy,308 which might not be the best or- 308 Many languages require functions

to be defined before they’re used, so a
purely top-down presentation means
reading the program backwards.

der for the reader of the woven book to understand how the program
works. A literate programming system needs to allow the program to
be written “out of order”!

Org supports literate programming in a straightforward manner:
just write your text in Org’s markup language, and express your
program source code in separate #+begin_source blocks. If you need
to change the order of things, use Org’s Noweb syntax.

Now you can tangle your literate program into compilable source
code with M-x org-babel-tangle-file, and weave (typeset) your
document just by exporting it via your preferred backend.

This book is in a small way a literate program, in that I tangle all
the recommended Init File snippets scattered throughout the book
into an actual executable Init File available for download. Many
Emacs users maintain their own Init Files as proper literate programs,
as I do with my own.

See “Noweb Reference Syntax” in the Org manual for more infor-
mation.

Evaluating Code

One of the most amazing features of Org is that it can be used to
write dynamic documents that are a mix of static text and the results
of evaluating code. In other words, parts of your document can be
computed every time you export it for publication.

https://en.wikipedia.org/wiki/Presentation_program
https://www.gnu.org/software/emacs/manual/html_node/org/Beamer-Export
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Literate_programming
https://www.gnu.org/software/emacs/manual/html_node/org/Noweb-Reference-Syntax
https://www.lib.uchicago.edu/keith/emacs/minimacs.html
https://www.gnu.org/software/emacs/manual/html_node/org/Noweb-Reference-Syntax

390 keith waclena

In addition to exporting nicely formatted and colorized code for
your published documents, source blocks can be evaluated in your
Buffer to generate document content. For example, instead of typing
in a table containing some lines of data, or even inserting it from
some data file, you can use a source block that can read in the data
and process it into an Org table (or any other sort of presentation: a
numbered list, an example block, etc).

Your source block needn’t merely read in existing data and refor-
mat it: it can calculate or generate the data from scratch. You might
use a stats package like R to do a statistical analysis of some data and
generate plots to be displayed in your document.

Any source block can have an :exports header that says whether
to publish only the source code itself (the default), or to only export
the result of evaluating the code (or both).

Normally, the code and/or results appear in the published doc-
ument at the location of the source block, but if you give a source
block a name, you can define the code in one location, and then call
it by name elsewhere, possibly in multiple places. Source blocks can
also take parameters, which can have default values. Org calls such
named blocks Babel functions. This function computes the number of
years from some date to now:

#+name: years-since

#+begin_src emacs-lisp :exports none :var when=1985

(number-to-string (- (string-to-number (format-time-string "%Y" (current-time))) when))

#+end_src

I can call this function elsewhere like so:

#+call: years-since(when=1918)

which produces a one-line result:

105

Note that I provided a default value, 1985 (GNU Emacs’s birth date),
for the when parameter, since I more than once in this book mention
how long GNU Emacs has been around; if I call the function without
giving the when parameter, it will compute the age of Emacs.

A function that produces a small scalar value is often more use-
fully called inline like so:

GNU Emacs has been flourishing for call_years-since() years.

which results in: GNU Emacs has been flourishing for 38 years.
There is also a :results header that let’s you specify how to in-

terpret the results of evaluating the block: results can be Org tables,

https://en.wikipedia.org/wiki/R_(programming_language)

use gnu emacs the plain text computing environment 391

lists, saved in files, and more. #+call: and inline calls can specify
:exports and :results headers that apply only to that call.

You can also evaluate any source block with a C-c C-c to see
how your calculation is working: the results (if not suppressed by
a header) will appear in your Buffer.

Security Issues The fact that Org Mode allows you to evaluate code
from a file raises security concerns. Of course, a dynamic Org doc-
ument that you evaluate in Emacs is no more dangerous than a file
of Python code that you evaluate in the Python interpreter, but peo-
ple who don’t know about Org might not expect the possibility of
evaluation.

Fortunately, Org (and Emacs in general) is very careful about this.
By default, Org will ask you for confirmation before evaluating each
source block. If you’re surprised by this because you loaded and
tried to export a file written by someone else, just say “no” or hit C-g

(keyboard-quit) and then investigate the situation.
Such confirmations are unworkable if you’re editing a document

that uses a lot of them309, so we usually set org-confirm-babel- 309 I make 1,501 Org source block
function calls in this book; I don’t want
to say “yes” that many times every time
I export it.

evaluate to nil in a file-local variable. Since Emacs asks you to con-
firm the setting of this variable when you visit any file that sets it,
you won’t be able to evaluate any code unexpectedly. See Security
Concerns for more information.

See “Working with Source Code” in the Org manual for more
information.

Metaprogramming

By metaprogramming I mean a computer program that is written in
several programming languages simultaneously. You might think of
a Unix shell script that allows you to connect, via pipes, several com-
plete programs, written in various languages, as a kind of metapro-
gram.

Org is more meta than that, because it doesn’t require that all the
different programs be compiled and installed as separate standalone
executables.310 Instead, you just embed all the code in all the lan- 310 Or installed as interpretive script

files.guages as Org source code blocks in your metaprogram document.
Any given source code block can contain code in any supported

programming language: Emacs Lisp, Python, Awk, Clojure, Haskell,
OCaml, Shell: what have you.311 Out of the box, Org supports 48

311 And even Org Mode itself, for some
recursive twistiness.languages, the Org Contrib project adds 20-odd more, and there are

71 more in the Package Manager.
If you name a source block, then another source block can call it

like a function and use its result—even if the two blocks are in dif-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/org/Working-with-Source-Code

392 keith waclena

ferent languages! The input to a source block can also be a manually
created Org table, including a spreadsheet.

Here’s a list of the languages Org knows out-of-the-box (computed
by an Org source block, of course):

awk C calc clojure comint core

css ditaa dot emacs-lisp eshell eval

exp forth fortran gnuplot groovy haskell

java js julia latex lilypond lisp

lob lua makefile matlab maxima ocaml

octave org perl plantuml processing python

R ref ruby sass scheme screen

sed shell sql sqlite table tangle

Reproducible Research

Many of the counts, diagrams, graphics, tables, and images in this
book were produced via Org metaprogramming, but a much more
interesting use case, and the reason this feature was added to Org in
the first place, is the facilitation of reproducible research. The idea here
is that instead of the usual scientific research paper describing some
data, a methodology, and summarizing the results, the paper should
actually include the actual data, and the source code used to analyze
and summarize it, so that other researchers can readily reproduce it.

An Org paper can include the data via attachments or drawers,
and all the source code as in-line source blocks which can be evalu-
ated right in your Emacs Buffer. See Schulte et al. This is essentially a
plain-text version of Jupyter Notebooks.

Org Outside of Emacs

Org’s markup language is supported by Github as an alternative
to Markdown for README files, is supported as an input language
by pandoc, and is understood as a syntax by other editors like vim

and VS Code, though it should be noted that the more powerful Org
features (like the spreadsheet and metaprogramming) are typically
not supported.

In the use of Org for Ubiquitous Capture and note-taking, it would
be very handy to be able to create and edit your Org notes on your
tablet or phone—and you can.

There are three main Org-compatible apps. For iOS there’s beorg
and MobileOrg, and for Android, Orgzly. There are also two web
apps which will work on any device with a web browser: organice
and org-web. All these apps typically work with a centralized cloud
file store, such as DropBox, Google Drive, or iCloud.

https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://github.com/
https://beorgapp.com/
https://github.com/MobileOrg/mobileorg
https://play.google.com/store/apps/details?id=com.orgzly
https://github.com/200ok-ch/organice
https://github.com/DanielDe/org-web

use gnu emacs the plain text computing environment 393

The only one of these that I’ve tried is Orgzly; I use it daily and
am extremely happy with it. I’m averse to using cloud file stores, so
I have Orgzly synchronize directly with my laptops and desktops via
Syncthing, and easily resolve occasional edit conflicts with Ediff.

References

• Ballantyne, Tony. 2018. My Emacs Writing Setup. https://github.
com/ballantony/emacs-writing/blob/main/EmacsWritingTips.

org.

• Free Software Foundation. 2020. The Org Manual. Cambridge,
MA: Free Software Foundation. https://www.gnu.org/software/
emacs/manual/org.html. Read in Emacs with M-x info-display-manual

RET org RET.

• Knuth, Donald E. 1984. “Literate Programming.” The Computer
Journal 27, no. 2: 97–111. http://www.literateprogramming.com/
knuthweb.pdf.

• Schulte, Eric, Dan Davison, Thomas Dye and Carsten Dominik.
2012. “A Multi-Language Computing Environment for Literate
Programming and Reproducible Research.” Journal of Statistical
Software 46, no. 3: 1–24. doi:10.18637/jss.v046.i03.

• The Org Mode web site.

• Worg, the Org Mode community.

There’s an Org Mode Reference Card; for languages other than
English see the web site.

https://syncthing.net/
https://github.com/ballantony/emacs-writing/blob/main/EmacsWritingTips.org
https://github.com/ballantony/emacs-writing/blob/main/EmacsWritingTips.org
https://github.com/ballantony/emacs-writing/blob/main/EmacsWritingTips.org
https://www.gnu.org/software/emacs/manual/org.html
https://www.gnu.org/software/emacs/manual/org.html
http://www.literateprogramming.com/knuthweb.pdf
http://www.literateprogramming.com/knuthweb.pdf
https://doi.org/10.18637/jss.v046.i03
https://orgmode.org/
https://orgmode.org/worg/
https://orgmode.org/worg/orgcard.html
https://orgmode.org/

Printing

Emacs has many convenient and useful printing commands you
can use. You can print a file or any Buffer312, with or without auto- 312 Whether or not it’s visiting a file.

matic pagination and headers, and with or without colors and fonts
that match what you see in the Buffer. And of course for serious
publication-style printing, you can typeset various markup languages
like LATEX and Org for eventual printing.

The very first thing to do is to see if printing “just works” for you!
First, make sure you can successfully print from outside of Emacs, in
whatever normal way you do so. If that works313, try printing from 313 If it doesn’t, you need another

book. . .Emacs: just switch to any Buffer and say M-x print-buffer. If that
works, congratulations! If it doesn’t, skip to Configuring Printing for
Unix and good luck!

Plain Printing

Emacs printing is mostly organized around printing a Buffer. (To
print a file directly, just Visit it first. You can also print a file directly
from Dired with Dired’s P (dired-do-print) command.)

Basic monochrome printing that should work with even the old-
est314 printers consists of the four commands in Table 46. 314 I.e. non-PostScript printers, even

ancient dot matrix printers or line
printers.

Paginated Not Paginated
Buffer M-x print-buffer M-x lpr-buffer

Region M-x print-region M-x lpr-region

Table 46: Plain Printing Commands

You can print the whole Buffer, or just the Region, and you can
print with pagination or without. Pagination adds a header that iden-
tifies the Buffer, and adds reasonable margins and page numbers.
This is actually done by the old Unix program, pr(1). You can Cus-
tomize lpr-page-header-program to change that.

These four commands are for basic printing of plain text, like
listings of programming language source files and the like.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Printing
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/Line_printer
https://en.wikipedia.org/wiki/Line_printer

396 keith waclena

Postscript Printing

Most modern printers, including home printers, are PostScript print-
ers315; PostScript is actually a programming language for describing 315 In my workplace, our printers are

actually networked photocopiers that
speak PostScript.

page layout that printers understand. Emacs has a collection of com-
mands that convert your Buffer to PostScript and then send it to a
printer; see Table 47. The main advantage of these commands is that
they can also print in color and in various fonts. All these commands
paginate and add page headers.

Each of these commands interprets a Prefix Arg to “print” to a
prompted-for file, instead of to a printer.

You almost certainly want to use these commands instead of the
plain printing commands above, and I would guess you’d almost
always want color. To simplify things, you could define an alias for
this in your Init File like so:

(defalias 'print 'ps-print-buffer-with-faces)

after which you can print your Buffer with M-x print.

Print . . . with Faces
Buffer M-x ps-print-buffer M-x ps-print-buffer-with-faces

Region M-x ps-print-region M-x ps-print-region-with-faces

Table 47: PostScript Printing Com-
mands

There’s an analogous set of commands that spool instead of print;
see Table 48. This is an old computer jargon term that means to
queue things up for printing, and then print them later.

Spool . . . with Faces
Buffer M-x ps-spool-buffer M-x ps-spool-buffer-with-faces

Region M-x ps-spool-region M-x ps-spool-region-with-faces

Table 48: PostScript Spooling Com-
mands

After using one or more of these commands, you can send the
whole bunch to your printer with M-x ps-despool.

There are lots of ways to Customize PostScript printing; try M-x

customize-group ps-print, and see “PostScript Variables” in the
Emacs manual.

“Printing” to HTML

You can also convert any Buffer to colorized HTML, suitable for
installing on a web site or attaching to an Email; see Table 49.

M-x htmlize-region-save-screenshot is designed for pasting
colorized HTML into an Email or the like; it uses inlined CSS so the
colorization is stand-alone.

https://en.wikipedia.org/wiki/PostScript
http://www.catb.org/~esr/jargon/html/S/spool.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/PostScript
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/PostScript-Variables
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 397

M-x htmlize-buffer Convert Buffer to HTML
M-x htmlize-region Convert Region to HTML
M-x htmlize-region-save-screenshot . . . saving to Kill Ring
M-x htmlize-file Convert a file to HTML and save it
M-x htmlize-many-files . . . do the same for many files at once
M-x htmlize-many-files-dired . . . via marked files in Dired

Table 49: Htmlize Commands

Configuring Printing for Unix

Hard-copy printing is a complex topic, at least on Unix systems,
and the Emacs interface to printer configuration reflects this. As
a long-time Unix user, I’ve never had to set up printing under MS
Windows or Mac OS—I’ll assume that it just works out of the box on
those OS’s.316 But on Unix, there are scads of ways printing might 316 That’s why you use them instead of

Unix, right?be set up, and I can’t address all that here. I’ll just mention that in
my experience, many current Unix systems use CUPS for printing,
and CUPS provides both the traditional Berkeley Unix and System
V command-line print spooling commands in addition to its web
interface.

Emacs uses the lpr(1) command (the Berkeley flavor) as the de-
fault program to print your Buffer. Some systems use lp(1) (the Sys-
tem V flavor) instead; you can M-x customize-variable lpr-command

to change it.317 317 Your system may use an entirely dif-
ferent command; if you can print from
the command line, you can configure
Emacs to use it.

Emacs may need to know the name of your printer, if it hasn’t
been set up as the system default. Customize printer-name to fix
that. For some reason, on my work computer, which uses CUPS to
talk to a campus-wide remote printing service, I have to set printer-
name to the empty string:

(setq printer-name "")

Why, I don’t know! This is the fault of CUPS (or our printers), not
Emacs; I mention it as an example of the kind of fiddling you might
have to do.

You may need to add some switches318 to the lpr-command; Cus- 318 AKA “command-line optons”. . .

tomize lpr-switches for that. I need to add my campus username to
be authorized, for example:

(setq lpr-switches '("-U" "myusername"))

You may need to change more things: Finally, I need to set:

(setq lpr-add-switches nil)

in order to prevent Emacs from adding some standard switches each
time it prints, which aren’t accepted by our system.

https://en.wikipedia.org/wiki/CUPS

398 keith waclena

If none of that helps you, you should read the manual; see “Print-
ing” in the Emacs manual, and then see what you can do via M-x

customize-group for lpr.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Printing
https://www.gnu.org/software/emacs/manual/html_node/emacs/Printing
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

UNFINISHED Modal Editing

Third-Party Packages

The Emacs package repositories I recommend currently have 5,803

third-party packages available for installation. These packages are
written by enthusiastic and generous Emacs users and contain a
lot of very useful code. See The Package Manager for how to find,
install, and manage them, and Security for safety information.

What kind of packages are available? There are scads of Major
Modes for every imaginable programming language; Minor Modes
to add convenient editing features or fix a problem that annoyed
somebody or just scratched an itch; Emacs interfaces to external ap-
plications, and to web services I’ve never heard of; games and amuse-
ments; plenty of Emacs themes; and who knows what else! Here I’ll
just mention a tiny selection of additional third-party packages you
might want to investigate, some because they’re popular and others
because they’re unusual. I use some of these but definitely not all—in
particular, I haven’t even tried many of these, so don’t take these as
recommendations. Just use C-h P (describe-package) with any of
the package names below for more information.

csv-mode Major Mode for CSV files

darkroom remove visual distractions and focus on writing; see also
olivetti and writeroom-mode

dired-duplicates find duplicate files locally and remotely

emacs-everywhere use all the power of Emacs to edit non-Emacs
text entry boxes (e.g. in Gmail or any other web page) in a pop-up
Emacs Window

hyperbole kitchen-sink package whose main job is to turn prac-
tically everything into a hyperlink; also includes yet-another-
outliner and -contacts manager, and a window manager (for your
Emacs Frames and Windows)

magit powerful interface to the Git version control system

https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords
https://www.gnu.org/software/hyperbole/
https://github.com/magit/magit

402 keith waclena

multiple-cursors make the same edits at multiple places in your
Buffer at the same time; sort of a sometimes-alternative to Key-
board Macros

operate-on-number apply arithmetic functions to a number at Point

org-drill study flash-card style via the powerful Spaced Repetition
method; Emacs version of Anki

vlf Minor Mode that allows instant viewing, editing, searching and
comparing of very large files—terabytes in size

which-key Minor Mode that reminds you of all the possible continu-
ations of a Prefix key like C-x 4 or C-c; great for newbies

I’ve already recommended and included in the book’s Init File
the Incremental Narrowing Frameworks vertico and its add-on
marginalia; windmove for switching Windows; and wgrep for Writable
Grep.

Here are some of the other third-party packages that I’ve men-
tioned, and sometimes covered in detail, elsewhere in the book:

Icicles and selectrum Completion; see Third-Party INFs

pdf-tools PDF viewing; see Better PDF Handling with PDF Tools

nov reading EPUB e-books; see Document Files (PDFs and the Like)

disk-usage find out where all your disk space has gone; see Third-
Party Directory Tools

yafolding fold many kinds of text; see Yafolding Mode

mew, wanderlust, and notmuch mail user agents; see Reading Mail

elfeed RSS feed reader; see Web and News Feeds (Syndication)

mw-thesaurus thesaurus; see Dictionaries and Thesauri

fish-completion and bash-completion much improved Completion
for shell-mode; see Recommended Third-Party Packages

goto-last-change and goto-chg navigate to the location of the
last change you made in your Buffer; see Move Via Your History
of Changes

http://en.wikipedia.org/wiki/Spaced_repetition
https://apps.ankiweb.net/

Security Concerns

Computer security is a vexing topic, and I am not a security expert.
Please remember that it’s your responsibility to determine the safety
of every program you choose to use, including Emacs. Any program
you run can do anything that your operating system lets it do. But
because the nature of Emacs is different from most programs, I will
mention a few security issues for you to be aware of.

Since Emacs contains a programming language interpreter (it’s a
Lisp Machine, remember), from a security point of view it’s more like
Python, say, than it is like MS Word. When you use Python, of course
you understand that the Python interpreter is going to evaluate code:
that’s the whole point. The same is true of Emacs and Emacs Lisp.

But because many people think of Emacs as “just a text editor”,
they may be surprised Emacs can evaluate code, and surprised at
when exactly that can occur. After TECO, Emacs was probably the
first programmable editor. But many editors since have modeled
themselves on Emacs and can evaluate code in the form of macros of
some sort, which inevitably led to macro viruses. And spreadsheets
(like Excel) of course contain executable formulas. And web browsers
execute Javascript code whenever you open a web page319. 319 And used to execute other kinds of

code, like Java applets and Flash.So let’s take a look at some of these cases in Emacs to make sure
we understand them.

File- and Directory-Local Variables

We’ve already mentioned that you can add code to a file that will
set the value of a Buffer-Local Variable when you Visit the file. This
is an extremely convenient shortcut for the process of: 1. loading a
file, 2. remembering that you now want to change the values of some
Buffer-Local Variables, and 3. changing them with M-x set-variable.

The same facility allows you to put arbitrary code in a file to be
evaluated upon Visiting. Obviously this could be dangerous if you
Visit a file that was modified by a malicious person—perhaps a file
that was emailed to you or that you downloaded from the web.

Suppose we have the file foo.txt that contains exactly this text:

https://en.wikipedia.org/wiki/TECO_(text_editor)
https://en.wikipedia.org/wiki/Macro_virus_(computing)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Examining

404 keith waclena

Hello.

Local Variables:

eval: (message "Hello there.")

End:

The Local Variables: block320 at the end of the file sets the pseudo- 320 Directory-Local Variables work
exactly the same way.variable eval to the Elisp function call (message "Hello there.").

When you Visit the file, Emacs pops up a Window like this:

The local variables list in foo.txt

contains values that may not be safe (*).

Do you want to apply it? You can type

y -- to apply the local variables list.

n -- to ignore the local variables list.

! -- to apply the local variables list, and permanently mark these

values (*) as safe (in the future, they will be set automatically.)

i -- to ignore the local variables list, and permanently mark these

values (*) as ignored

* eval : (message "Hello there.")

As you can see, Emacs clearly displays the code that could be exe-
cuted, and asks you whether or not you want to do so. If this ever
surprises you (because you didn’t write this code, or you’re not sure
exactly what it does), just say n and Emacs will finish Visiting the file
without evaluating the code. Typing i will cause it to never evaluate
this variable, even in future, different, files.

If in fact you are okay with evaluating the code, and type y, you’ll
see (in this example) the message “Hello there.” displayed in the
Echo Area, since that’s what message does.

Because EIPNIF, you can also tell Emacs that it’s always okay to
evaluate code, any code, from any file, without asking any questions.
I strongly discourage you from doing this, of course (and I don’t do
so myself).

Variable Safety

Less extreme than the special eval pseudo-variable are ordinary
Variables that you might set in a file. That might look like this:

Local Variables:

crazy-variable: "strange value"

other: 12

End:

use gnu emacs the plain text computing environment 405

Here we’re setting one Variable to a string and one to an integer.
Emacs will go through exactly the same dialog with you as for eval,
above. While eval is considered to never be safe, these two Variables,
which I made up, are also considered to be unsafe because Emacs
knows nothing about them.

But because many such settings are perfectly innocent, Emacs
has a way to avoid asking you about all of them. When a Variable
is defined, the programmer can specify its safety. This is done by
assigning a predicate321 that tests whether or not a given value for 321 That is, a function that returns true

or false.that Variable is safe. For example, the documentation for the variable
python-indent-offset, which specifies the number of leading spaces
used to indent a line of Python source code in python-mode, says:

This variable is safe as a file local variable if its value satisfies the
predicate ‘integerp’.

integerp, as Emacs will tell you if you ask (with C-h f (describe-
function)), returns true if and only if the value is a simple integer. So
this File-Local Variable setting:

python-indent-offset: 4

is considered safe, and Emacs won’t ask you to confirm it, whereas
these two:

python-indent-offset: "foo"

python-indent-offset: (steal-identity!)

are not.
When all the File-Local Variables in a file pass their safety tests,

you can Visit the file without the confirmation dialog. If any of them
fails, Emacs will use the dialog to check with you.

Third-Party Packages

When installing third-party packages via the Package Manager, re-
member that a third-party Emacs package can do anything your op-
erating system would allow you to do with Emacs or Elisp yourself,
including deleting files or stealing your personal data! In this sense,
Emacs is no different than every other package manager—whether
for a programming language, the app store on your phone, or an
application like a web browser.

In an ideal world, you would personally vet the source code for
any package before you install it322, but this assumes you’re a compe- 322 As you ideally would for every

phone app you install. . .tent Elisp programmer, and realistically, very few people are willing
to go to all this trouble and are more trusting or risk-taking than that.
But it is at least possible: unlike the vast majority of phone apps, you

https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help

406 keith waclena

have complete access to the source code of Emacs packages, thanks
to free software. Even if you don’t vet the code, it’s the nature of
free software that there’s the potential for many people besides the
original author to vet it.

The GNU and NonGNU ELPA repos are managed by the Emacs
developers and hosted by the GNU project, and are probably more
secure than other repos. That being said, I currently use some 135

third-party Elisp packages from GNU and NonGNU ELPA and from
MELPA, have used many more in the past, and have never in 38

years encountered any malware. But it’s up to you to do what you
consider to be due diligence. Do some research before installing:
search the package on the web and see what people say about it;
visit the package’s home page (very likely to be found on Github;
C-h P (describe-package) will tell you), and see how many people
are using it.

Package Signatures

Packages can have cryptographic signatures, and Emacs can validate
them before installation. Not all packages are signed, however, and
the default is to allow unsigned packages to be installed. You can
Customize package-check-signature to make this more strict if
you like. Please note that a valid signature in no way implies that
a package contains safe code; it just verifies that the package hasn’t
been modified since its author signed it. It’s up to you to determine
whether or not you trust the author. See “Package Installation” in the
Emacs manual for more information.

Compiling Elisp Code

When you install a package, Emacs compiles the code for efficiency,
but the act of compilation can also involve evaluating some of the
code. So if you’re really worried about some code, vet it before you
even install it.

Evaluating Code in Org Mode

Just as many programming language Major Modes provide a facility
to evaluate source code, Org Mode also let’s you define source code
blocks and will evaluate them when you export the file. The Org
spreadsheet will also evaluate arbitrary Elisp functions. See the Org
Mode chapter for more information, and especially the Org manual.

https://github.com/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords
https://en.wikipedia.org/wiki/Digital_signature
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Installation
https://www.gnu.org/software/emacs/manual/html_node/org/

Authentication

Emacs sometimes acts as an intermediary when you are authenticating
yourself. Examples include editing a file via Tramp’s sudo method,
connecting to your email provider via your Emacs mailer, or logging
in to a remote host via Tramp. In these cases, you will be prompted
for a password in the Minibuffer. As you make more and more use
of Emacs, this might eventually happen often enough to be annoying:
then it’s time to set up Emacs authentication.

Emacs authentication has three built-in modes:

• The simplest, and the default, form of authentication is to simply
store your passwords in a file so Emacs can just look them up and
submit them for you.

• Emacs also supports the freedesktop.org Secrets API, used by the
Gnome, KDE, and Xfce Unix desktops; if you’re already using one
of their password managers you probably want to have Emacs use
it too.

• Finally, Emacs can use pass(1), “the standard Unix password
manager”.

I use pass(1) for my web site passwords, but I use an authentica-
tion file for my Emacs password needs. You can use any, or combine
several. I’ll only describe file-based authentication here; see the auth-
source manual for details.

File-Based Authentication

Check the value of the User Option auth-sources with M-x customize-

variable; this is a list of filenames and the first filename is the de-
fault; on Unix systems this will be ~/.authinfo and I’ll assume it. I
think that you should encrypt this file, but it’s neither mandatory nor
the default. The encrypted version is ~/.authinfo.gpg (which will be
listed as the second filename in auth-sources).

https://en.wikipedia.org/wiki/Freedesktop
https://www.freedesktop.org/wiki/Specifications/secret-storage-spec/
https://www.passwordstore.org/
https://www.passwordstore.org/
https://www.gnu.org/software/emacs/manual/html_node/auth/index.html
https://www.gnu.org/software/emacs/manual/html_node/auth/index.html

408 keith waclena

To make sure you’re using an encrypted file, Customize auth-

sources via M-x customize-variable and make the .gpg filename the
only member; you can change where it lives if you like.

Emacs may have created the default (unencrypted) file for you if
it has ever asked if you want to save a password (and you answered
yes). So if you’re already using an unencrypted authentication file
(check for its existence), I suggest you encrypt it (see Symmetrically-
Encrypting an Existing File).

Note that for historical reasons, the .authinfo file is also referred
to as the “netrc” file in some documentation. Old-timers will feel me.

.authinfo File Format

The .authinfo file consists of one line per password, and the basic
format of the line is:

machine MYMACHINE login MYLOGINNAME password MYPASSWORD port MYPORT

In general, it’s a sequence of field-name / field-value pairs, and the
order of the pairs doesn’t matter. The field names above suffice for
many kinds of services—remote logins, email authentication—but
some services will use different or additional field names. The port

field was originally a TCP/IP port number, but you can also use the
symbolic port name from /etc/services, and it’s also used loosely
to identify services that don’t actually use a port (like port sudo to
specify your sudo(1) password).

The fields are space-separated, so if you have a space in a pass-
word (or in any of the field values) you can put the whole value in
double- or single-quotes. If you have a quote in a field value, quote
the whole value with the other style of quotes, and if you have both
types of quote in a field, then, to quote the Knight Templar, “you
chose poorly”.323 323 By which I mean, the file format

can’t cope with that.When Emacs needs a password, the lines in your file are consid-
ered in order, and the first to match the situation is chosen. If you
have these lines:

machine example.com login joeblow83 password geheimnis port smtp

machine example.com login joeblow83 password hemmelig

then the first will be used when doing SMTP (email-sending) authen-
tication at example.com but the second line will be used for all other
services at that host.

Unless you name your authentication file strangely, when editing
it, Emacs will use authinfo-mode, which does simple colorization,
but also obfuscates the value of the password field, making it look
like four asterisks. This is to defeat shoulder-surfing; just move Point
inside the asterisks to see the password.

https://en.wikipedia.org/wiki/Shoulder_surfing_%28computer_security%29

use gnu emacs the plain text computing environment 409

References

Free Software Foundation. 2022. Emacs auth-source. Cambridge, MA:
Free Software Foundation. https://www.gnu.org/software/emacs/
manual/auth.html. Read in Emacs with M-x info-display-manual

RET auth RET.

https://www.gnu.org/software/emacs/manual/auth.html
https://www.gnu.org/software/emacs/manual/auth.html

Programming the Lisp Machine

What one fool can do, another can. — Silvanus P. Thompson, Calculus
Made Easy, 1911

You can avoid learning elisp and still be very productive using emacs,
but chances are if you’re like most people you will get sucked in even-
tually as the lure of sanding the rough edges off of some mode or other
becomes too great :) — Chris Patti

Unlike most lesser but still somewhat-customizable applications,
Emacs provides a clear path from your first customization tweak to
power user to full-blown extension programmer, primarily because
Emacs is itself written in the language used to customize it.

Customization in Emacs Lisp

In the old days, the only way to customize Emacs was by adding
Elisp to your Init File, but for at least 26 years—since version 20—the
Customize Facility has provided an interactive forms-based system
for most of your customization needs. I’m embarrassed to say that I
used to disdain Customize (I guess I thought it was too hand-holdy,
and anyway, writing Elisp is fun!)—but I was a fool. Customize is
very powerful and has major advantages, and I encourage you to use
it as much as possible; see The Customize Facility.

That being said, there are a few sorts of customizations that you
can’t do, or can’t do conveniently, via Customize. First and foremost
is setting up custom key bindings; another is complex customizations
that require conditional logic (say, dependent on which host your
Emacs is running on, or the version of your Emacs). Also, if you’re
adding a non-trivial lambda expression to a hook, it’s typically much
nicer to edit it in your Init File in emacs-lisp-mode than to edit it in
a hole in a Customize form. Additionally, some authors of 3rd-party
libraries, especially older ones, may have been too lazy to set up
Customization for their User Options.324 Finally, if you start writing 324 I’m afraid I fell into this category

until recently. . .your own Elisp functions or defining your own Faces, your Init File is
the place to put them!

https://www.feoh.org/vim-versus-emacs-minus-the-religion.html
https://en.wikipedia.org/wiki/Anonymous_function
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval

412 keith waclena

Where is My Init File?

For historical and political325 reasons, there are several acceptable 325 POSIX. . .

locations for your Init File. The oldest, most traditional, filename
is ~/.emacs, though Emacs now prefers ~/.emacs.el (adding the
standard file extension for Elisp files). These locations use the root of
your home directory, but there are good reasons to prefer putting it
in your User Emacs Directory, which by default is ~/.emacs.d/ under
the name init.el, or, in full, ~/.emacs.d/init.el. I recommend the
latter: Emacs will eventually create this directory anyway, to store
other files like packages you’ve installed, Abbreviations, or your
saved desktop, so why not keep your Init File in the same place? For
more information, see “Find Init” in the Emacs manual.326 326 Microsoft users can see the Wiki for

how this translates to Windows.

Basics of Elisp Syntax

While you don’t really need to be an Elisp programmer to do sim-
ple Init File customizations, you do need to understand the bare
minimum of Lisp syntax to do it correctly. Fortunately, few serious
programming languages have a simpler syntax than Lisp!327 327 Considering only “real” program-

ming languages, I might say only Forth
is simpler. . .

A Lisp expression is either an atom, or a list of expressions—note
the recursive definition. The simplest atom is a symbol, which you can
think of as a word, and a list is a space-separated sequence of expres-
sions surrounded by parentheses. So all of these are expressions:

nil an atom (symbol)

use-file-dialog another atom

(nil use-file-dialog) a list of two atoms

(nil (nil use-file-dialog)) a list of two expressions, an atom
and a (sub-)list

That’s almost all there is to it! Your Init File consists of a sequence
of such expressions, separated by (optional) blank lines and com-
ments. Practically speaking, all your top-level expressions will be
lists. Comments are notes to the reader and are ignored by Elisp; a
comment starts with a semicolon and extends to the end of the line.
Here’s a possible snippet from an Init File: a comment, followed by
an expression that’s a list of three symbols:

;; turn off GUI dialogs...

(setq use-file-dialog nil)

Note that using two semicolons to start the comment is just a conven-
tion328; just one would be sufficient. 328 Applying when a comment takes up

a whole line.There is of course a little more—but surprisingly little—to Lisp
syntax than this. In particular, there are a few types of atoms other

https://en.wikipedia.org/wiki/POSIX
https://www.gnu.org/software/emacs/manual/html_node/emacs/Find-Init
https://www.emacswiki.org/emacs/MsWindowsDotEmacs
https://en.wikipedia.org/wiki/Forth_(programming_language)

use gnu emacs the plain text computing environment 413

than symbols, which have their own syntax: things like numbers,
strings, and such; see Variables and Symbols for details.

Quoting

One final bit of syntax is the quotation: any Lisp expression can be
prefixed with a single quote (apostrophe) character ’ in order to
prevent its evaluation. Here are two quoted expressions: ’linum-mode
and ’(partial-completion substring flex). Note that we use just
one ’ as a prefix, not a pair of them!

I can’t reveal the truth of when you need to quote something and
when you don’t in the space I have available: this is at the heart of
understanding the semantics of Lisp. See the Eintr manual for a
complete discussion. But I will give a few hints below.

Setting User Options

Let’s see how to set a simple User Option in your Init File (even
though you should prefer M-x customize-option). I personally hate
the GUI dialog boxes that Emacs will occasionally pop up; I want
Emacs to always use the Minibuffer instead. There are two User
Options to control this: use-file-dialog and use-dialog-box.

The first step in setting a User Option is to read the help so that you
understand what values are legitimate, so do C-h v (describe-
variable) on each of them. Turns out both of these are simple
Booleans: I want to set them to nil (i.e. “false”, or “off”).329 329 If you want to set them to on, you’d

use the value t, which is the conven-
tional value for “true” or “on”—but
actually, in Elisp, any non-nil value
counts as true.

The basic Elisp function for setting a variable’s value is setq. It
takes two parameters: the variable name, and the new value. So this
snippet does the job:

;; turn off GUI dialogs...

(setq use-file-dialog nil)

(setq use-dialog-box nil)

Some variables want to be set to a number or a string; just write the
obvious:

(setq some-variable "this is a string")

(setq some-other-variable 12)

But some variables want to be set to a symbol. For example, locale-
coding-system says what to interpret as your system locale. Your
OS usually tells Emacs what this is, but if it doesn’t, you could set
it in your Init File. The point is that this variable should be set to a
symbol—perhaps utf-8-unix. You would think this would do the
job:

https://www.gnu.org/software/emacs/manual/html_node/eintr/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Name-Help
https://en.wikipedia.org/wiki/Locale_(computer_software)

414 keith waclena

(setq locale-coding-system utf-8-unix) ; WRONG

But this will generate an error. Since symbols serve as Lisp variables.
Elisp will try to evaluate utf-8-unix as a variable to get its value—
but it’s not a variable with a value: it’s just a symbol standing for
itself. So you have to quote it to prevent it from being evaluated, like
so:

(setq locale-coding-system 'utf-8-unix)

Remember, when the help for a variable says its value should be a
symbol, you need to quote the symbol.

When a variable says its value should be a function, you also want
to quote it. This is for the same reason, because most functions are
represented as symbols. The help for confirm-kill-emacs says:

How to ask for confirmation when leaving Emacs. If nil, the default,
don’t ask at all. If the value is non-nil, it should be a predicate func-
tion; for example ‘yes-or-no-p’.

I have this in my Init File:

(setq confirm-kill-emacs 'yes-or-no-p)

The same goes for when a variable wants a list: you’ll need to be
sure to quote the list. This is because lists of data look like function
calls: or if you prefer, function calls are expressed as lists. This keeps
the syntax very simple, at the cost of needing to know what’s data
and what isn’t.

world-clock-list configures the cities for M-x world-clock (see
World Clock). I set it to four cities:

(setq world-clock-list

'(("America/Chicago" "Chicago")

("America/New_York" "Kalamazoo")

("America/New_York" "Syracuse")

("Europe/Vienna" "Vienna")))

The value here is a list of four lists; each sub-list is a list of two
strings. Note how I quote the outer list (but I don’t need to quote
any of the contained values: the outer quote covers the whole thing).
If I don’t quote the list, I get an error:

Invalid function: ("America/Chicago" "Chicago")

So when setting a variable to a list, quote the list.

Setting Default Values

Some variables are declared Buffer Local; when you ask for help about
them, the documentation will say: “Automatically becomes buffer-
local when set”. Buffer Local variables are meant to potentially have

use gnu emacs the plain text computing environment 415

a different value in every Buffer. So customizing one actually means
setting a default value, which will be the variable’s value in any Buffer
where you haven’t given it a presumably different local value.

setq will only set the local value of a Buffer Local variable; to set
the default value, we need to use a different function: setq-default.

I recommend setting the variable indent-tabs-mode to nil so that
Emacs uses only spaces—never tab characters—for indentation (see
Tabs vs Spaces). Here’s how to do it:

;; never use tabs to indent

(setq-default indent-tabs-mode nil)

So remember, when you read the Help and it says the variable is
Buffer Local, use setq-default.

Setting Hooks

A Hook is just a regular variable with a particular purpose: to hold
a list of functions; see Hooks for an explanation. While you could
technically set a Hook in your Init File with setq, there’s a special
function to make it easier: add-hook. add-hook is preferred to setq

for this purpose because it does some extra work that’s appropriate
to Hook variables.

Suppose you want to turn on spell check in text-mode and other
Major Modes derived from it. This is the right way to do it:

(add-hook 'text-mode-hook 'flyspell-mode)

flyspell-mode is of course a function that toggles a Minor Mode on
and off, and such Minor Mode functions are the most common things
to add to Hooks.

If you look at text-mode-hook with C-h v after starting Emacs
with the above line in your Init File, you’ll see that its value is a list,
containing at least the symbol flyspell-mode.

Since flyspell-mode is a function, you know you have to quote
it. But why is the variable name text-mode-hook also quoted? The
variable names we use with setq aren’t quoted!

There’s a good and sensible reason, but I won’t try to go into it
here (Chassell explains it in “Text and Auto-fill” in the Eintr manual):
for now, you’ll have to just take this as a magic incantation that pla-
cates the Emacs gods. So when using add-hook, quote both the name
of the Hook, and the name of the function you’re adding to it.

By the way, the extra work that add-hook does for you that plain
setq wouldn’t is that it only adds the function to the Hook’s list of
functions if it’s not already there (so that the function doesn’t run
twice!).

https://www.gnu.org/software/emacs/manual/html_node/emacs/Locals
https://www.gnu.org/software/emacs/manual/html_node/emacs/Hooks
https://www.gnu.org/software/emacs/manual/html_node/emacs/Text-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Spelling
https://www.gnu.org/software/emacs/manual/html_node/eintr/Text-and-Auto-fill

416 keith waclena

Please note that you can set Hooks from Customize, and you
should generally prefer to do so. But as your Elisp skills grow, you
might find it awkward to edit a multi-line lambda expression in a
hole in a form.

Defining Key Bindings

Defining Key Bindings is the big lacuna in the Customize Facility,
but your Init File is here for you. Let’s bind linum-mode to a key so
you can more easily toggle it on and off. We’ll use the mnemonic C-c

l for our keystroke (see Bind It To a Key for more on this choice). If
we want our new binding to work everywhere, then we want to use
global-set-key according to this pattern:

(global-set-key (kbd "C-c l") 'linum-mode)

By now you won’t be surprised that you have to quote the function
(linum-mode) that you’re binding. But what’s up with (kbd "C-c

l")?
This is one of many ways you can “spell” a key binding. The kbd

function takes a string that specifies the binding in the same way that
Emacs talks about it. So think of your desired binding, and then ask
Emacs how it’s spelled, and use that.

Suppose you want to bind linum-mode mode to a function key
instead—perhaps F7. But how do you spell “F7”? Just ask Emacs:
invoke C-h c (describe-key-briefly) and when prompted for a
keystroke, hit that key. You’ll see in the Echo Area that Emacs spells
it <f7>, so you’d use (kbd "<f7>").

Why don’t we quote the list (kbd "C-c l") according to the rule
I gave above? Because it’s a list representing a function call, so we
specifically don’t want to prevent it from being evaluated and doing
its job.

Remapping Commands Sometimes you want to replace a command
that’s already bound to one or more keystrokes with an alternative
command that you prefer. Suppose you’ve installed an alternative to
Dired, say neo-dired330, for directory editing. C-h w (where-is) tells 330 I just made that up. . .

me that dired is bound to three keystrokes331: C-x C-d, C-x d, and 331 Technically, three events. . .

<menu-bar> <file> <dired>. We can change the binding of C-x C-d

with this expression:

(global-set-key (kbd "C-x C-d") 'neo-dired)

but now we have to do two more. Instead, we can change all the
dired bindings with this single expression:

(global-set-key [remap dired] 'neo-dired)

https://www.gnu.org/software/emacs/manual/html_node/elisp/Lambda-Expressions
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rebinding
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Help

use gnu emacs the plain text computing environment 417

Disabling Commands As discussed earlier, Emacs starts with some
commands (thought to be confusing to newbies) disabled by default.
While I think you’ll eventually enable all these commands, you might
actually want to disable some other commands that you find annoy-
ing.

For example, suspend-frame is bound to C-z and C-x C-z and
“iconifies” an Emacs Frame (when running in graphical mode). What
“iconification” actually does is up to your window manager; usually
it minimizes the Frame. Since I use a tiling window manager, this
command is useless to me and actually has an annoying effect. I
don’t want to accidentally invoke it, so I disable it like so:

(put 'suspend-frame 'disabled t)

You can use this as a recipe; be sure to imitate the quoting style.

Un-binding Commands A less extreme version of this might be to
not actually disable a command, but just remove the key binding by
which you accidentally invoke it. You can do this by binding a key to
the special symbol nil like this:

(global-set-key (kbd "C-z") nil)

After this, C-z will just beep at you, but you can still invoke the com-
mand that was previously bound to C-z, without going through the
elaborate Disabled command dialog, with M-x suspend-frame. See
“Key Bindings” in the Emacs manual for more information..

Test Your Init File Modifications!

After every Init File tweak, you should immediately do a test to make
sure you haven’t introduced an error! This is especially so if, as I
recommend, you run the Emacs Server, which implies that it may
be a long time before you next restart your Emacs. If it’s been weeks
since you tweaked your Init File, an error at startup time will be all
the more puzzling.

After saving your tweaked Init File, just do this:

M-x async-shell-command RET emacs --no-desktop --debug-init

This fires up a fresh Emacs (without bothering with all the files in
your current desktop); if it pops up with no errors, you’ve passed
the first test! You should also test the new functionality you added
to see if, in addition to not blowing up with an error, it also actually
does what you expect! Then just do C-x C-c (save-buffers-kill-
emacs) to exit and breathe easy. (Some classes of bugs won’t reveal
themselves this early in the game, but you might as well eliminate
the ones that will.)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://en.wikipedia.org/wiki/Tiling_window_manager
https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Key-Bindings

418 keith waclena

If you have made a mistake that generates an error, the --debug-init

option will pop up the Debugger; even without Elisp debugging
skills, this should help you determine where your error is—and
anyway, you know it’s got to be in the tweak you just made! Use
q (debugger-quit) to quit out of the Debugger, and C-x C-c to exit
the test Emacs, and see if you can fix your bug (in the original Emacs
where you were editing your Init File). See “Debugger” in the Elisp
manual for details on the Elisp Debugger.

Defining Your Own Commands

One common reason for writing a program is to automate a repet-
itive editing task. Many such tasks are ad hoc and unique to one
situation. Keyboard Macros are often ideal for this: they’re easy and
fast to write, so you don’t feel bad about throwing them away when
you’re done.

But for more complex tasks, you’ll need a real programming lan-
guage, and since you’re living inside of a Lisp Machine, of course
you’ll choose Emacs Lisp.

Now, I can’t teach you to program in one chapter, but you can
learn if you want to, and Robert Chassell’s An Introduction to Program-
ming in Emacs Lisp is the perfect choice. It starts from scratch, uses
Elisp, the programming examples are Emacs-oriented, and the en-
tire book can be read in Info, while you write, test, and debug your
programs in Emacs.

If you’re already a programmer—especially if you know another
Lisp (like Common Lisp or Clojure)—you can skim through Chassell
or dive right into the Elisp manual.

What I can do in this chapter is give you a taste of what Elisp
programming feels like. We’ll implement a realistic but simple new
Emacs command, one that I, at least, actually find to be useful.

A Missing Command

What with the 6,099 interactive commands that Emacs starts out
with, you might be surprised to discover you need one that doesn’t
already exist. I wanted to be able to jump to a random Buffer line,
and couldn’t find a command to do it. Such a command would fit
among the Goto commands on the M-g prefix (M-g M-g (goto-line),
M-g c (goto-char), and friends). Myself, I’d bind it to M-g M-r.

So of course I wrote it and added it to my Init File, and now I can
M-g M-r whenever I want.

What use is such a command? I frequently have lists of things in
my Emacs: some are generated by Emacs (like the Buffer generated

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/elisp/Debugger
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 419

by M-x list-colors-display) and some I maintain in files myself
— lists of songs or books or movies to watch, for example. Some
of these lists have hundreds of lines, and sometimes it’s easier to
have Emacs pick a candidate, rather than having to scroll through
them, staring until my eyes glaze over. (I can’t be the only person
who needs this; there are dozens of web sites that let you paste in
your data and will then pick a line at random for you — while you
gaze at their ads and they gather your personal info from the data, I
presume.)

An Implementation

Here’s what I wrote. Let’s dissect the parts to see what makes Elisp
code, and an Emacs command, tick.

;; this is my new command

(defun kw-goto-random-line ()

"Go to a randomly chosen line in the current buffer."

(interactive)

(goto-line (+ 1 (random (count-lines (point-min) (point-max))))))

The first thing you’ll notice, probably especially if you’re a program-
mer, is all the nested parentheses; this is a hallmark of all members of
the Lisp family.332 Don’t worry about it: emacs-lisp-mode makes it 332 Non-Lispers think LISP stands

for “Lots of Irritating Superfluous
Parentheses”. Yawn.

very easy to keep track of all the parens when you’re editing code.
Amounts of whitespace (except in string literals) are not significant

in Elisp333; you could write the whole function on one line to be per- 333 Contrasted with Python, for example.

verse. Lispers use a standard indentation style which is understood
by emacs-lisp-mode, so you barely have to do anything other than hit
return in order to have your function indented conventionally.

Comments

My code starts with a comment on the first line:

;; this is my new command

Elisp comments start with a semicolon and continue to the end of the
line; it’s conventional, but not mandatory, that whole-line comments
start with two semicolons. Comments are very useful in general, and
are to be encouraged, but this comment is just a demonstration; it’s
completely pointless. For one thing, it tells the reader nothing useful.
It would also be pointless to use it to describe what the function
does—the usual reason for such a comment in most languages—
because the docstring (see below) does that for us.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Colors
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Comment_(computer_programming)

420 keith waclena

Naming Things

We’re looking at a function definition: defun stands for “define func-
tion”. For the name of this function I chose kw-goto-random-line.
Elisp functions need fairly long, descriptive names. Since there are
21,285 functions in a stock Emacs, you need a long name to make it
unique (there’s already a standard Elisp function called random, for
example, so that’s right out). When you type them, either at a M-x

prompt for commands, or in source code, Completion means you
don’t need to type the whole thing anyway, and the long names help
you recognize the function you want to use amongst the Completion
candidates.

I chose goto-random-line rather than, say, jump-to-random-line,
just because Emacs already uses the goto- prefix for other related
functions. Finally, I used my personal namespace, kw-, at the very be-
ginning: Elisp doesn’t have real namespaces, so we use package
name prefixes as a hack334, and every Emacs user (who programs) 334 For example, all dired functions

begin with dired-.has their own personal prefix they use to namespace their personal
functions.

You might be surprised that I’m allowed to use hyphens in my
function name335; this isn’t allowed in most programming languages 335 Though you’ve already seen hun-

dreds of function names with hyphens
in this book: all the M-x commands are
functions, of course.

because it would be taken as a chained subtraction of four variables.
In most programming languages, underscores are used instead of
hyphens, but because of Lisp’s unique syntax, you can use almost
any character in a name. In Lisp, hyphens are to be preferred over
underscores.

Function Parameters

The () after the function name is the formal parameter list; this func-
tion doesn’t have any parameters, but the empty parens are still
required.

The Docstring

We know that all (good) Emacs commands have documentation that
you can look up in the Help system (and that goes for non-command
functions too). This documentation is a part of the function definition
called the docstring. Most modern programming languages have doc-
strings (they were invented in the TECO implementation of Emacs
in 1976), though often only as a distinguished form of comment ex-
tracted by a post-processor; in Elisp, docstrings are actually attached
to the symbol that names the command, which is what makes the
Help and Apropos systems possible.

A good docstring starts with a one-sentence summary of the be-

https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Docstring

use gnu emacs the plain text computing environment 421

havior of the function. It can be much longer than that: many para-
graphs, if necessary, and Elisp defines a markup language for doc-
strings that supports hypertext links to related functions, variables,
documentation, and the like.

Commands Must be Interactive

While all Emacs commands are functions, not all functions are com-
mands. Commands are functions intended to be called interactively:
that is, invoked explicitly by the user, via M-x or a key- or mouse-
binding. Non-command functions, on the other hand, are intended to
be called indirectly by other commands or functions.

Why not let all functions be invoked by the user?336 The main 336 Actually, all functions can be in-
voked by the user, e.g. via M-: (eval-
expression), which lets you invoke
arbitrary Elisp expressions from the
Minibuffer.

reason is because it results in a better user experience; otherwise, the
Completion space would be expanded at least four-fold, and it would
diminish the utility of M-x apropos-command, forcing you to plow
through many functions that you’re never going to invoke directly.

So, unless you mark a function as a command, you can’t invoke
it via M-x or a key binding. The special form (interactive) marks
a function as a command, and it has to come immediately after the
docstring in the function definition.

The remainder of the defun is the code that actually implements
our command. To summarize, the overall shape of any Elisp com-
mand definition looks like:

(defun COMMAND-NAME (PARAMETER ...)

"DOCSTRING.

MORE DOCUMENTATION..."

(interactive)

(IMPLEMENTATION CODE))

The Algorithm

So how can we implement jumping to a random line in the Buffer?
We know how to jump to a specific line: just call M-x goto-line with
the number of the line we want to jump to. So what if we just call
goto-line with a random number? That’s not quite right: about half
of the random numbers are negative numbers, and those are not suit-
able to use as line numbers. So we need a positive random number
— but even that’s not quite right: there are a lot of positive random
numbers out there, and most of them are bigger than the number of
lines in any given buffer.337 337 There are 2,305,843,009,213,693,951

possible positive integers in Elisp.
(Okay, more, actually. . .)

So really, we want a random number greater than 0 and less than
or equal to the number of lines in the current Buffer. Given that, we
can just pass it to goto-line and we’re done.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Eval
https://www.gnu.org/software/emacs/manual/html_node/emacs/Apropos
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

422 keith waclena

Every programming language has functions to generate random
numbers, but how do we figure out how to do that in Elisp? The
Apropos system will do the job: M-x apropos RET random RET lists
seven candidates338 and we can easily spot the obvious one: random. 338 Or 50-odd, if you’ve loaded the

optional packages that I have.Alternatively, we can pop into the Elisp manual in Info, invoke i

(Info-index) and give it “random” and be taken directly to §3.10

Random Numbers, which describes the random function in detail.
Most significantly, we see that we can give random an optional integer
parameter LIMIT, which causes random to return a number from 0 to
(LIMIT − 1).

We also need to know how to find the number of lines in the cur-
rent Buffer, so that we can pass a suitable upper-bound to random.
The same documentation-searching techniques with Apropos or the
Manual will lead us to the function count-lines.

So our algorithm is: count the lines in the Buffer, get a random
number in that range, and pass it to goto-line.

The Actual Code

Finally, we get to the actual code that implements our algorithm.
After the (interactive) in our defun, we place one or more Elisp ex-
pressions339. (The value of the last expression in the defun is returned 339 No expressions at all are also valid,

but can only implement a function that
does nothing: what programmers call a
no-op.

from the function, but the returned value of an interactively-invoked
command is ignored.)

Our implementation is a one-liner: four nested function calls. In
most programming languages, a function call looks much as it does
in mathematical notation. To call a function f with the arguments x
and y typically looks like f (x, y). This is a prefix notation—the func-
tion name precedes its operands—to be distinguished from the infix
notation used for common binary operators like +, −, ×, and ÷.

But Lisp uses fully-parentheszied Polish prefix notation340, in which 340 Invented by the Polish logician Jan
Łukasiewicz in the 1920s.the function call would look like (f x y). We just move the left

parenthesis to the left of the function name. Additionally, we don’t
need to use commas to separate the arguments: just whitespace. Our
expression:

(goto-line (+ 1 (random (count-lines (point-min) (point-max))))))

in traditional notation would look something like:

goto_line(1 + random(count_lines(point_min(), point_max()))) ; this is NOT Elisp

Polish prefix notation implies that even functions that are typically
written as infix operators are written in prefix form: instead of 1 + x
we write (+ 1 x). Prefix notation is more consistent, allows us to use
any characters in our function and variable names, doesn’t require us

https://www.gnu.org/software/emacs/manual/html_node/info/Search-Index
https://en.wikipedia.org/wiki/NOP_(code)
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
https://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz

use gnu emacs the plain text computing environment 423

to memorize operator precedence rules, and has deeper advantages
as well.

Step 1 in our algorithm is to call count-lines. C-h f count-lines

tells us that we need to give it two parameters:

(count-lines START END)

because it’s a general purpose function that counts the lines in the
Region bounded by START and END, which are character positions
in the Buffer, i.e. possible values of Point. For START we need the
position of the beginning of the Buffer, and for END that of the end
of the Buffer. The function point-min gives us START341, and point- 341 This will usually be 1, which we

could have written instead of (point-
min) — unless the buffer is narrowed:
(point-min) takes narrowing into
account, and so is the correct code.

max gives us END. Neither of these functions takes any parameters, so
putting them together gives us:

(count-lines (point-min) (point-max))

the result of which is the value we want to pass to random.
There’s a wrinkle: a careful reading of random’s documentation

tells us that, given a numeric parameter as a limit, it will return a
random number from 0 to one less than the limit. (Counting from zero
makes programmers happy and is very common.) There’s really no
line 0 in a Buffer, and if our random number can never be the last
line in the Buffer, then our function is biased against the last line.

Fortunately we can easily fix both of these problems by just adding
1 to the number of lines! The number is still random: we’ve just
adjusted its range:

(+ 1 (count-lines (point-min) (point-max)))

All that’s left is to pass this adjusted random line number to goto-

line:

(goto-line (+ 1 (random (count-lines (point-min) (point-max))))))

That’s our complete function; let’s take a look at it again:

(defun kw-goto-random-line ()

"Go to a randomly chosen line in the current buffer."

(interactive)

(goto-line (+ 1 (random (count-lines (point-min) (point-max))))))

We can test it with M-x kw-goto-random-line.

Bind It to a Key

For some custom commands, we might be done at this point. M-x is
good enough for commands that are only occasionally invoked. But
my use case for this command is to invoke it in a long Buffer, and if

https://en.wikipedia.org/wiki/Homoiconicity

424 keith waclena

I’m not inspired by the line I land on, to invoke it again immediately,
and perhaps repeat the process a dozen times until serendipity solves
my decision-making problem—kind of like the way John Cage or
Philip K. Dick used the I Ching in their music composition or writing.

In other words, I want to bind my new command to a keystroke
for easy invocation. This means I need to pick a key sequence. I can
either come up with an unused one, or steal the existing binding of
some command I don’t I think deserves it. (It’s completely fine to
change standard key bindings: you’re just turning Emacs into your
ideal editor.)

Appendix D.2, Key Binding Conventions, in the Elisp manual,
addressing the authors of Elisp packages, says:

Don’t define ‘C-c LETTER’ as a key in Lisp programs. Sequences
consisting of ‘C-c’ and a letter (either upper or lower case) are reserved
for users; they are the only sequences reserved for users, so do not
block them.

When you’re defining a command in your Init File, you’re the user,
so those 52 C-c LETTER key sequences are available to use for your
own commands. But for this command, I’m going to put it on the M-g

prefix along with the other goto- commands. The M-g prefix only has
nine bindings out of the box, which gives me a wealth of available
bindings to choose from. I think the felicitous and mnemonic binding
M-g M-r is perfect. Here’s the command that goes in our Init File:

(global-set-key (kbd "M-g M-r") 'kw-goto-random-line)

References

• Borkowski, Marcin. 2021. Hacking Your Way Around in Emacs.
https://leanpub.com/hacking-your-way-emacs/.

• Chassell, Robert J. 2020. An Introduction to Programming in Emacs
Lisp. Cambridge, MA: Free Software Foundation. https://www.
gnu.org/software/emacs/manual/eintr.html. Read in Emacs with
M-x info-display-manual RET eintr RET.

• Glickstein, Bob. 1997. Writing GNU Emacs Extensions. Sebastopol,
CA: O’Reilly Media..

• Guerry, Bastien. 2013. Learn Emacs Lisp in 15 minutes. https://
learnxinyminutes.com/docs/elisp/.

• Krawitz, Robert, Bil Lewis, Dan LaLiberte, Richard M. Stallman
and Chris Welty. 2019. GNU Emacs Lisp Reference Manual. Cam-
bridge, MA: Free Software Foundation. https://www.gnu.org/
software/emacs/manual/elisp.html. Read in Emacs with M-x

info-display-manual RET elisp RET.

https://en.wikipedia.org/wiki/John_Cage
https://en.wikipedia.org/wiki/Philip_K._Dick
https://en.wikipedia.org/wiki/I_Ching
https://www.gnu.org/software/emacs/manual/html_node/elisp/Key-Binding-Conventions
https://leanpub.com/hacking-your-way-emacs/
https://www.gnu.org/software/emacs/manual/eintr.html
https://www.gnu.org/software/emacs/manual/eintr.html
https://learnxinyminutes.com/docs/elisp/
https://learnxinyminutes.com/docs/elisp/
https://www.gnu.org/software/emacs/manual/elisp.html
https://www.gnu.org/software/emacs/manual/elisp.html

The Emacs Community

There’s a vibrant, friendly, and helpful global community of Emacs
users, including the volunteers who maintain the source code and are
constantly fixing bugs and making enhancements.

Project GNU

GNU Emacs is part of the GNU project (GNU’s Not Unix!) and has
its home there. You can go there for the official download page, web
versions of the documentation, and more.

The GNU Emacs FAQ

The official Frequently Asked Questions (FAQ) list is available in
Emacs via C-h C-f (view-emacs-FAQ).

The Emacs Wiki

If the FAQ doesn’t answer your question, your next stop should be
the community-supported Emacs Wiki; it’s loaded with tips, tutorials,
opinions, examples, and Elisp code. Try the Emacs Newbie page. Of
course it works great with EWW: M-x eww RET https://www.emacswiki.org/.

Mailing Lists

There are many Emacs mailing lists you can subscribe to. The two
most important are probably:

info-gnu-emacs a read-only list of official announcements from the
Emacs maintainers

help-gnu-emacs you can post questions to this list and the list mem-
bers will be happy to try to help you out

https://www.gnu.org/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/documentation.html
https://en.wikipedia.org/wiki/Faq
https://www.gnu.org/software/emacs/manual/html_node/emacs/Help-Files
http://www.emacswiki.org/
https://www.emacswiki.org/emacs/EmacsNewbie
https://www.emacswiki.org/emacs/EmacsMailingLists
https://lists.gnu.org/mailman/listinfo/info-gnu-emacs
https://lists.gnu.org/mailman/listinfo/help-gnu-emacs

426 keith waclena

Web Sites and Blogs

There are innumerable independent web sites and blogs devoted
to Emacs; for one stop shopping, go straight to Planet Emacslife, a
feed aggregator covering over 200 Emacs blogs. If you can only read
one blog on a regular basis, I’d have to recommend Sacha Chua’s
indispensable Emacs News.342 342 How does she do it?

Github

The last time I checked (2021), there were 4,029 public Github reposi-
tories tagged with “Emacs”.

Videos, Screencasts, and Podcasts

There are scads of Emacs videos and podcasts, available in the usual
places. Try Emacs Screencasts in the Wiki for a starting point.

IRC

You can easily chat with actual humans (one assumes. . .) about
Emacs on Internet Relay Chat (IRC).343 Project GNU says: 343 Via your preferred Emacs IRC client,

of course.
There are several IRC channels dedicated to discussion around Emacs
on the Libera.Chat network. Use #emacs for general discussion about
Emacs, #emacs-beginners for Emacs beginner help, and #emacs-til
(“today I learned”) for sharing Emacs tips and tricks. See also our rules
and guidelines for the official GNU and FSF IRC channels.

EmacsConf

EmacsConf is the conference about the joy of Emacs, Emacs Lisp, and
memorizing key sequences. — https://emacsconf.org/

There’s been an occasional (verging on annual) free Emacs conference
since 2013. You can watch the videos of past talks and download
papers and such from the conference web site.

https://planet.emacslife.com/
https://en.wikipedia.org/wiki/Planet_(software)
https://sachachua.com/blog/category/emacs-news/
https://www.emacswiki.org/emacs/EmacsScreencasts
https://en.wikipedia.org/wiki/Irc
https://www.gnu.org/software/emacs/further-information.html
https://emacsconf.org/
https://emacsconf.org/

Part III

NEVER LEAVE EMACS:
APPLICATIONS

use gnu emacs the plain text computing environment 429

In this part of the book we discuss major Emacs applications:
Modes and subsystems that either replace the other applications
most computer users need, or provide Emacs front-ends to them.

Some topics that could be considered Emacs applications are dis-
cussed elsewhere; for example:

archivers see Archive Files

document readers see Info: The Emacs Documentation Reader and Docu-
ment Files (PDFs and the Like)

file managers see Directory Editing with Dired

file pagers, tail -f see Read-Only Buffers, or, Emacs is More and Auto-
Reverting (Watching Files)

file searching tools see Meet the Greps

image viewers see Image Files

printing utilities see Printing

remote logins and shells see Remote File Editing with Tramp

spreadsheets see Org Mode

External Commands, Shells and Terminals

There is a world outside of Emacs, and sadly we must occasionally
interact with it directly.

Emacs provides indirect, smooth and transparent access to the
outside world through interfaces like the grep family of search com-
mands, the vc family of version control commands, and many more
— you might well use commands like these without even knowing
that they’re interfaces to external commands.

But we still need to run the occasional ad hoc external command
that no one has yet written an interface for. Emacs provides many
ways to do this.

Running One Command

If you just need to run one command, you can use M-! (shell-
command). It prompts you for a command344, runs it synchronously, 344 You can use TAB completion on both

the command name and any filename
arguments.

and shows you the command’s output (standard output and stan-
dard error combined).

For example, if you want to know the date and time345, you could 345 You can have the time of day (and
the system load average) displayed in
the Mode Line by putting (display-

time) in your init file.

say M-!, type date at the “Shell command:” prompt, and hit return.
This runs the standard Unix command date.

As the name shell-command and its prompt implies, it uses the
shell to run this command, so you can use shell metacharacters, file
globs, redirection, pipes, etc.

Already, even with such a simple command, several questions are
raised.

Which shell is being used?

Emacs tries hard to use “your shell” when executing external com-
mands. If your shell is bash or zsh or any Posix-compliant shell, it’ll
be fine. If your shell is an exotic, not-so-Posix, shell, like say fish or
rc, you may or may not have problems. If you do, try setting shell-

file-name to bash or sh in your init file346. 346 (setq shell-file-name

(executable-find "bash"))

https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://fishshell.com/

432 keith waclena

Where’s the output?

If the command ran successfully but produced no output at all, you’ll
see the message “(Shell command succeeded with no output)” in the
Echo Area. For example, you might remove a file by saying, M-! rm

FILENAME347. Since rm is usually silent, Emacs will report the mes- 347 It’s probably nicer to use M-x delete-

file instead, which has some extra
features. (It’s tricky to come up with
good examples of external command
usage because for most common
possibilities, Emacs provides a better
native way to do it!)

sage above. You can try this with the harmless command M-! true,
which does nothing but succeed, and produces no output.

If the command failed348 silently, you’ll instead see the message

348 I.e. terminates with a non-zero exit
status.

“(Shell command failed with code 1 and no output)”; try M-! false

to see this.
If the command produces output (whether to stdout or to stderr),

Emacs pops up a Buffer named *Shell Command Output* which con-
tains it. You can do what you like with this: gaze upon the output be-
fore deleting the Window or killing the Buffer, jump to the Window
to copy some of the text349, or edit the output to get it into shape for 349 There’s a better way; see below.

some other purpose.
However, if the command produced only a small amount of out-

put350, it will be inserted into the *Shell Command Output* Buffer as 350 By default, less than 1/4 of the
height of the current frame; this is max-

mini-window-height.
above, but the Buffer won’t be popped up; instead the output will be
shown in the Echo Area. (You can still switch to the output Buffer to
grab the text.) So M-! date seems to have the effect of just showing
the date and time in the Echo Area.

What happens to the output Buffer if I do M-! twice?

By default, if the *Shell Command Output* Buffer already exists, its
contents are erased before the next M-! uses it. If you’d prefer that
subsequent M-! commands append to this Buffer, you can change
this in your init file351. If you only occasionally want to keep the old 351 (setq

shell-command-dont-erase-buffer

t)
contents around, you can also rename the Buffer before the second
M-!.

What do you mean, synchronously?

When I say that M-! runs the command synchronously, I mean that
Emacs waits until the command finishes: if the command takes a
noticeable amount of time to run, Emacs will appear to freeze up,
and you can’t type or execute commands. This is a usually a good
thing, because it means that you can’t, say, accidentally save a file
that would affect the running command: synchronous execution is
easier to understand and so the effect is more reliable. Try running
the command M-! sleep 60 and you’ll have to wait one minute
before Emacs comes back to you: that’s synchronous execution.

Of course, you can always interrupt and terminate the external

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops

use gnu emacs the plain text computing environment 433

command. You’ve probably guessed that you do this the same way
you interrupt an internal Emacs command: just hit C-g (keyboard-
quit) — try it with M-! sleep 60. This is exactly the same as
Control-C’ing a command in the shell: Emacs sends a SIGINT sig-
nal to the process.

If you’re a Unix programmer, you know that external commands
are allowed to ignore SIGINT. If you hit C-g twice, Emacs sends the
unignorable SIGKILL signal to the command.

Isn’t there an easier way to insert command output?

A common reason to run an external command is to grab its output
to insert in some Buffer. Rather then micromanaging Buffers and
Windows by switching to and from the output Buffer and copying
and pasting text, you can directly insert the output of the command
into the current Buffer (at Point) instead, just by giving M-! a prefix
argument. So, if you want a time-stamp in the current Buffer, you can
say C-u M-! date.

What about standard input?

By default, the standard input of the external command is redirected
to come from /dev/null. You can see this by running M-! cat —
this command terminates immediately with no output instead of
waiting for input, the way it would in the shell. In other words,
Emacs effectively runs cat < /dev/null.

Sometimes you instead want to use part of a Buffer as the input to
the external command. You could of course tediously copy the text to
a temp file and say something like M-! tr a-z A-Z < /tmp/myfile,
but there’s a much easier way. Just set the Region around the text
you want to feed to the command and use M-| (shell-command-on-
region) — that’s a pipe, not an exclamation point.

Perhaps you want to know how many words are in the previ-
ous paragraph. Just set the Region around the paragraph with M-h

(mark-paragraph) and say M-| wc -w and you’ll see the answer in the
Echo Area (there are 80)352. 352 Of course, Emacs can directly count

the words for you with M-x count-

words-region (also on M-=); I said it
was hard to think up examples that you
need to do with external commands!

Sometimes you want the output of the external command to actu-
ally replace some text in your Buffer; giving M-| an argument will do
this. For example, if you just typed a whole paragraph of an email in
which you really wanted to yell at someone but forgot to hold down
Caps Lock, just set the Region around the paragraph and say: C-u
M-| tr a-z A-Z, which will feed the paragraph to tr, and replace the
paragraph with tr’s all-uppercase and shouty output353. 353 But again, you’d really do this with

C-x C-u (upcase-region). . .

https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Paragraphs
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info
https://www.gnu.org/software/emacs/manual/html_node/emacs/Position-Info
https://www.gnu.org/software/emacs/manual/html_node/emacs/Case

434 keith waclena

Can I run any program this way?

I’m afraid that fully answering this question requires us to enter
rather deeply into the Unix weeds354. You can run any classic Unix 354 And frankly, I have no idea how this

issue translates to Microsoft Windows.command-line application, keeping in mind that if it reads from stan-
dard input, you need to redirect stdin from a file, as in:

M-! tr a-z A-Z < /etc/passwd

or from the current Buffer, as with M-|: you can’t expect to provide
input by typing at the program (but see Interactive Shells below).

You can fire up GUI programs that don’t use the terminal, like, say,
firefox (best done asynchronously with M-&).

But you can’t necessarily run every program that prompts a hu-
man for input (from /dev/tty, a.k.a. The Terminal) with M-!, or M-|.
Some such programs may work with M-&, but it’s highly dependent
on how exactly they use the terminal355. There aren’t a lot of Unix 355 For those familiar with Unix system

calls, a program that opens the terminal
in cooked mode and flushes properly may
work, but raw mode programs probably
won’t work at all.

command-line programs that ask questions and expect answers, but
there are a lot that allow for single-character input. Many so-called
Curses applications fall into this category: programs like top, htop, vi,
vim, less, more, mutt, and many more.

Additionally, most Curses applications also address the screen i.e.
clear the screen, move the cursor around — up and down and left
and right — as an animation perhaps, or the way vi lets you move
the cursor with the hjkl or arrow keys. Even if they don’t ask for in-
put, these programs won’t work successfully because cursor address-
ing requires a terminal emulator356. If you try to run such a program, 356 But guess what? Emacs has a termi-

nal emulator. Several. See below.the output (consisting largely of what we call escape sequences) will
look like garbage.

The good news is:

1. Emacs implements native versions of many of these kinds of
Curses programs; instead of top, use proced; instead of mutt, any
of Emacs’s mailers; instead of less, M-x view-mode; instead of vim,
Emacs with M-x evil-mode; and so forth.

2. If you really want to run vim (!) or top or mutt inside Emacs, you
can; you just can’t use M-! to do it; see Terminal Emulation below.

What if I don’t want to wait?

While synchronous execution is often a good thing, sometimes you
want to run a command asynchronously — what if you want to fire
up a PDF viewer for example, as a background process357? You don’t 357 Emacs can display PDFs itself, but

I’ll admit that an external PDF viewer
might occasionally be a better choice.

want Emacs to be frozen until you’re done reading.
All you need to do in this case is run M-& (async-shell-command).

Unlike M-!, after M-& Emacs doesn’t freeze because it’s not waiting for

https://en.wikipedia.org/wiki/Curses_(programming_library)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell

use gnu emacs the plain text computing environment 435

the command to finish; you can continue working358. 358 Alternatively, you can use M-!

but append an ampersand & to the
command — the same thing you’d
do in the shell; there’s no difference
between these two approaches: M-& just
appends the ampersand for you.

The output Buffer in this case uses a different name: *Async Shell

Command*. There’s one big difference between this Buffer and the
synchronous *Shell Command Output* Buffer: the background pro-
cess is connected to the *Async Shell Command* Buffer. This means
that if you kill that Buffer, Emacs will kill the background process
associated with it. It will ask permission first:

Buffer "*Async Shell Command*" has a running process; kill it? (yes or no)

Also, if you terminate Emacs itself, all running async processes that
Emacs started will be killed. It will display a list of these processes
and ask you first: “Active processes exist; kill them and exit anyway?
(yes or no)”.

If you instead terminate an asynchronous command outside of
Emacs (that PDF viewer probably has a quit command), Emacs
will notice and mention this in the Echo Area (e.g. “pdfviewer file-
name.pdf: finished.”).

Since async commands tend to stick around for a long time, if you
run a second M-&, Emacs will ask:

A command is running in the default buffer. Use a new buffer? (yes or no)

If you don’t want to wait for the previous command to terminate,
you should say “yes”. Really, I’ve never had a reason to answer this
question with “no”. Also, most of the commands one typically runs
asynchronously don’t produce any useful output, so the fact that
the *Async Shell Command* Buffer is always popped up is kind of
annoying. I recommend the following settings for your init file:

Init File
(setq async-shell-command-buffer 'new-buffer) ;multiple async commands ok!

(setq async-shell-command-display-buffer nil) ;don't pop up the buffer

Managing Asynchronous Processes

If you fire up a number of asynchronous processes in a long running
Emacs, you might want to check on them and see what state they’re
in.

M-x list-processes pops up a Buffer listing all the asynchronous
processes of which Emacs is the parent. It might look like this:

Process PID Status Buffer TTY Thread Command
OCaml 447866 run *OCaml* -- Main ocaml -nopromptcont
Shell 3779765 run *Async Shell Command* /dev/pts/0 Main /bin/zsh -c llpp web/emacs-tutorial.pdf
compilation 418697 run *compilation* /dev/pts/6 Main /bin/zsh -c make clean check
ielm 941277 run *ielm* /dev/pts/4 Main hexl
ispell 1495152 run -- -- Main aspell -a -m -d en_US --encoding=utf-8
server -- listen -- -- Main (network server on /run/user/1000/emacs/server)
shell 274144 run *shell* /dev/pts/5 Main /bin/zsh -i

You can find your M-& commands by looking in the Command column.

436 keith waclena

The Buffer column contains clickable links that take you to the
Buffer of the command; you can thus access any output the process
has produced. In addition, if you issue the command d (process-
menu-delete-process) it will kill the process on that line, and g

(revert-buffer) will update the list-processes Buffer to reflect
any changes in the state or existence of the processes (running M-x

list-processes again has the same effect).
For example, if you say M-& sleep 60 and then M-x list-processes,

you will see your command listed; if you type g within 60 seconds,
it will still be there, but if you type it after 60 seconds, your process,
which will have terminated, will be gone from the list.

You may notice processes in this list that you didn’t start with M-&.
These are processes that Emacs starts for you in response to various
commands. In the above, you can see, from top to bottom:

• an interactive REPL for the OCaml programming language

• an external PDF viewer (llpp)

• a compilation in progress (make clean check)

• an interactive REPL for Elisp (ielm)

• the spelling checker (aspell)

• a network server process (which is due to my running this Emacs
in Server Mode)

• an interactive shell that I’m using (zsh -i)

The only one of these processes that I invoked with M-& is the PDF
viewer.

Run Commands from Dired

Another way to run an external command is from a Dired Buffer.
This is great if you already happen to be in Dired, but if you’re about
to run a command on several files, it’ll often be worth your while to
pop up a Dired Buffer first. This lets you pick and choose the files
in various ways when a simple file glob isn’t enough. The dozens of
basic Dired commands let you do standard file management with
a single keystroke (delete, rename, copy, etc), but Dired also has
powerful ways to run arbitrary programs on precisely selected sets
of files, synchronously, asynchronously, or in parallel. See Running
External Commands in Dired.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Lisp-Interaction

use gnu emacs the plain text computing environment 437

Interactive Shells

If you anticipate the need to run a whole sequence of shell com-
mands in the near future, you might as well fire up a shell! M-x shell

will pop up a new Buffer with your shell running in it, in the di-
rectory of the Buffer in which you invoked it (so, if you’re editing a
file, the shell comes up in the directory of that file); the Buffer is in a
special Major Mode, shell-mode.

You can now use that shell much as you would in a terminal. Type
commands at the prompt, hit return, and see the output. There are
advantages and disadvantages to running your shells in Emacs; the
advantages are substantial.

shell-mode Advantages

First and foremost, shell-mode implements an editable transcript
of your entire session. Shell Buffers subsume the features of fancy
terminal programs and add-on terminal multiplexers like tmux and
screen, but with the advantage of using native Emacs features and
key bindings that you already know, which are in sum far more pow-
erful than any given terminal, and which are completely customiz-
able and extensible.

• Say goodbye to pagers like less and more! Never again will you
need to pull up the previous command just to append | less to
it (and then pointlessly re-run it!). Just use any Emacs scrolling or
motion commands to view any of the output in this session (but
especially see C-c C-r (comint-show-output)). This is of course
like using the scroll bar in a terminal, but far more precise, and
once you get where you’re going:

• you can easily copy and paste or even edit in place any of the
output;

• or open any filename or URL in the output without copy-pasting,
retyping, or mousing (just use M-x find-file-at-point, M-x
browse-url or the like);

• or zap uninteresting previous output with a keystroke (C-c C-o

(comint-delete-output));

• and rather than scrolling, you can search back through any of the
output in this session with all the power of incremental search and
M-x occur.

You can do any of these things while the program is running and
generating more output.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://en.wikipedia.org/wiki/Terminal_multiplexer
https://en.wikipedia.org/wiki/Tmux
https://en.wikipedia.org/wiki/GNU_Screen
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/FFAP
https://www.gnu.org/software/emacs/manual/html_node/emacs/Browse-URL
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Mode

438 keith waclena

Parenthetically, it should be noted that shell-mode is a descendant
of comint-mode, from which many Emacs interactive modes are made
(such as most programming language REPL modes), so many of the
above advantages also accrue to any comint Buffer (with the same
key bindings).

Command History

shell-mode implements its own command-line history operations in
place of your shell’s (though you can link the two histories together);
these commands are tightly integrated with Emacs.

If you’re at the shell prompt, a sequence of M-p (comint-previous-
input) (or <C-up>) commands will pull up your previous shell com-
mands in place, at the prompt; M-n (comint-next-input) (or <C-
down>’s) will change direction. (In most shells, plain up- and down-
arrows do this, but in a Shell Buffer, these are the normal Emacs
cursor-motion commands, so they actually move within the Buffer
(i.e., within the transcript), as do C-p and C-n).

But you can also move back in the transcript to previous com-
mands at their original prompts with C-c C-p (comint-previous-
prompt); when you do this you can see the command’s output in
context (C-c C-n (comint-next-prompt) goes the other way.)

Re-running Commands If you’re at a previous prompt, you can hit
RET (comint-send-input) to copy that command to the prompt at the
end of the transcript and resubmit (i.e., re-execute) it (you can edit it
before hitting RET). C-c RET (comint-copy-old-input) does the same
thing without submitting the command, so you can edit it at the end
of the transcript instead. It’s a subtle but useful distinction; try both
to see what I’m talking about.

In fact, with RET and C-c RET you can re-run shell commands that
appear in the output of shell commands: in other words, you don’t
have to be at a previous shell prompt. So if you do cat README and
the README file contains a shell command like this:

This command prints a Coordinated Universal Time (UTC) timestamp in

ISO 8601 format:

env TZ=Zulu date +%Y-%m-%dT%H:%M:%SZ

and here's why.

you can execute that shell command without cutting-and-pasting:
just position Point anywhere in that line and hit RET or C-c RET,
possibly after editing the command however you like.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-History-Copying
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-History-Copying
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-History-Copying
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-History-Copying

use gnu emacs the plain text computing environment 439

Searching Command History There are two ways to search your
command history. If you just search backward with C-r (isearch-
backward), you will search back through the transcript, and when
you find your way to the command you want, you hit RET or C-c RET

as just described. This involves searching past false matches in the
output of previous commands, so you can instead search the history
of commands in place, like a conventional shell in a terminal, at the
latest prompt at the end of the transcript, with M-r (comint-history-
isearch-backward-regexp).

Shell Control Characters Most shells support the commands in col-
umn one of Table 50, so you may be used to them (unless you’ve
turned on vi bindings!); because many of these keystrokes already
have a use in Emacs, the shell-mode equivalents (shown in column
two) are prefixed with C-c.

Shell Emacs Action
C-a C-a or C-c C-a Go to beginning of line (after prompt)
C-c C-c C-c Interrupt the running command
C-d C-c C-d Send EOF
C-e C-e Go to end of line

C-c C-e *Go to prompt at end of Buffer
C-o C-c C-o *Discard output
C-n or ↓ M-n or C-<down> Retrieve the next command
C-p or ↑ M-p or C-<up> Retrieve the previous command
C-r M-r Incremental search of command history
C-u C-c C-u Kill (erase) current line (back to prompt)
C-w C-c C-w Kill (erase) previous word
C-z C-c C-z Stop the running command
C-\ C-c C-\ Quit the running command
ESC . C-c . Insert previous final argument

Table 50: Shell Commands

Two actions (marked) are not perfect equivalents, in order to make
them more useful in an Emacs context.

C-c C-e goes to the end of the line if you’re at the final prompt at
end of the transcript, but if you’re elsewhere, it jumps to the end of
the transcript. Unix’s ancient Control+O command is usually overrid-
den or ignored in modern shells.

Manipulating the Transcript

You can edit the transcript using any commands you like, but shell-
mode defines some convenience features.

C-c C-r (comint-show-output) scrolls the first line of this batch of
output to the top of the Window; this is what to type if the output

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Ring
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Mode

440 keith waclena

of your command was too long to fit in the Window, rather than
scrolling backwards imprecisely, hoping to spot the beginning of
the output.

C-c C-o (comint-delete-output) deletes the last batch of out-
put from the transcript (replacing it with the string *** output

flushed ***).

C-c M-o (comint-clear-buffer) delete everything from the tran-
script except for one prompt, exactly what you see when you first
run M-x shell.

C-c C-s (comint-write-output) write the output of the last exe-
cuted command to a file; this is equivalent to, but nicer than, ex-
plicitly navigating to the beginning and end of the output, setting
the region, and executing C-x C-w (write-file).

Directory Tracking

shell-mode tracks cd, pushd, and popd commands359 and synchro- 359 This assumes these commands have
those exact names and behave the way
they do in a “normal” shell, e.g. bash. If
this isn’t the case for your shell, you can
fix it with some customizations.

nizes the Buffer’s default-directory with them, so as you move
around in the shell, file-related Emacs commands (like C-x C-f

(find-file)) will be aware of where you are (so if you type cd /etc

and then C-x C-f passwd Emacs will pull up /etc/passwd).

Terminating the Shell

You can terminate your shell just as you would in a terminal: run
the shell’s exit command (typically exit or logout) or send the shell
EOF, with C-c C-d (comint-send-eof). If you do this, the shell Buffer
remains; it will be dead — unresponsive — but you can view it and
manipulate the transcript; you can kill the Buffer when you’re really
done. You can also save a step and just run C-x k (kill-buffer)
without properly exiting the shell; Emacs will, as usual, tell you the
Buffer contains a running process, ask if you really want to terminate
it, and if so, kill the Buffer.

Multiple Shell Buffers

If you’ve already fired up a shell, M-x shell will return you to that
same shell Buffer, but you can have as many distinct shells as you
like. If you want another one, you can either manually rename the
Buffer first, or instead invoke C-u M-x shell, which will prompt
you for a Buffer name for a brand new shell. To be precise, with no
argument, M-x shell looks for a Buffer named exactly *shell* and
switches to it if it exists; if no such Buffer exists, it fires up a new
shell in a Buffer with that name.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Shell-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Kill-Buffer

use gnu emacs the plain text computing environment 441

An easy way to manage the common situation of one-shell-per-
software-project is to use C-x p s (project-shell) instead of M-x
shell; see Managing Projects for more information.

There’s no one-size-fits-all way to manage many shell Buffers, so if
you don’t want to use the usual Buffer selection commands to choose
the one you want, you’ll have to explore the Package Manager, which
has many third-party packages offering a choice of schemes for man-
aging and tracking shell Buffers (none of them suited me, so I wrote
my own360). 360 Which also doesn’t really suit me!

Tough problem.

What about the memory usage of the shell Buffer?

The transcript can take up a lot of space in your Emacs. If you run
a command which starts spewing output uncontrollably, it could
conceivably eat up all of memory, which is annoying. Why isn’t this
a problem in a terminal? Simply because no terminal that I know of
stores an unlimited amount of output: they all truncate it at some
(probably customizable) limit (the default is often a mere 1,024 lines).

While shell-mode doesn’t have any limit by default, you can set
one (expressed in lines), and I recommend it. However, to maximize
the usefulness of the transcript, I recommend setting it to a fairly
sizable number. This init file setting uses the number of lines in War
and Peace:

Init File
(setq comint-buffer-maximum-size 65336) ; must be able to cat War and Peace!

(add-hook 'comint-output-filter-functions 'comint-truncate-buffer)

shell-mode Disadvantages

shell-mode does have some disadvantages, compared to running a
shell in a terminal.

• As mentioned above, you can’t run raw-mode or Curses applica-
tions361. 361 Actually, there are third-party pack-

ages that allow this.

• shell-mode’s completion is simply nowhere near as good as that
of zsh (which I think has the best completion of any shell), fish,
or even bash — all of which can complete command-line options
for many standard commands. Do you know all the long options
for GNU tar? zsh does:

$ tar --<TAB>

zsh: do you wish to see all 170 possibilities (171 lines)?

and if you hit TAB, will display them with documentation!

https://www.gnu.org/software/emacs/manual/html_node/emacs/Project-File-Commands
https://en.wikipedia.org/wiki/War_and_Peace
https://en.wikipedia.org/wiki/War_and_Peace

442 keith waclena

I used to think this was a major weakness, but thanks to the
valiant contributors to the Emacs ecosystem, no longer! See Recom-
mended Third-Party Packages for a solution.

Recommended Third-Party Packages

To get completion in shell-mode that’s almost as good as zsh(1) in a
terminal, install the fish(1) shell via your OS package manager (I’m
assuming you already have the ubiquitous bash(1) installed), and
add this code to your Init File.

(dolist (pkg '(fish-completion bash-completion))

(unless (package-installed-p pkg)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install pkg))))

(add-hook 'shell-mode-hook

(lambda ()

(when (and (executable-find "fish")

(require 'fish-completion nil t))

(fish-completion-mode +1)

(when (and (executable-find "bash")

(require 'bash-completion nil t))

(setq fish-completion-fallback-on-bash-p t)))))

Shell Init File Tweaks

I recommend the following code snippet for your shell’s init file; it’s
at least suitable for bash(1) (add to your ~/.bashrc) or zsh(1) (add
to your ~/.zshrc). Remember that regardless of which shell you use
in your terminals, M-x shell runs the shell defined in shell-file-

name.
The INSIDE_EMACS environment variable will be non-empty (hence

the -n) in subprocesses fired up by Emacs (like the shell run by
M-x shell). We want to set TERM to a terminal that supports ANSI
SGR color control sequences for programs that emit them (notably,
grep(1), ls(1), and diff(1)) — ansi is fine for this. We define
aliases to encourage programs to produce colorized output.

We also want to convince programs never to direct their output
to a pager like more(1) or less(1) — remember that the shell-

mode transcript is itself the best pager; we do this by setting PAGER to
cat(1).362 362 man(1) needs extra convincing; hence

the setting of MANPAGER.Of course, in general we prefer M-x manual-entry to man(1), M-x

https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell

use gnu emacs the plain text computing environment 443

grep and friends to grep(1), M-x dired to ls(1), and M-x ediff and
friends to diff(1), but if you’re in a shell Buffer you’ll occasionally
want to invoke these commands.

Finally, I unset a zsh(1) option to prevent it from invoking the Zsh
Line Editor (shell-mode replaces that facility).

if [-n "$INSIDE_EMACS"]

then

export TERM=ansi

export PAGER=cat

export MANPAGER=cat

grep --version 2>/dev/null | grep GNU > /dev/null && alias grep='command grep --color=auto'

ls --version 2>/dev/null | grep GNU > /dev/null && alias ls='command ls --color=auto'

diff --version 2>/dev/null | grep GNU > /dev/null && alias diff='command diff --color=auto'

case "$0" in

*zsh) unsetopt ZLE ;;

esac

fi

Terminal Emulation

You can solve both of my claimed shell-mode disadvantages by
using M-x term instead:

• you can run raw-mode and Curses applications because term

is a full-fledged terminal emulator, just like xterm or any other
terminal

• you get the full completion capabilities of whatever shell you use
— because input is delivered a character at a time, instead of a
line at a time (as with shell-mode), when you hit TAB your shell
responds normally.

So now you can happily run htop, mutt — even vim works per-
fectly (if you’re in a sacrilegious mood).

Thanks for wasting my time with all that stuff about shell-mode then!

Well, I think the combination of shell-mode and native Emacs inter-
faces to applications is superior to M-x term. But most of the con-
cepts and commands from shell-mode apply to term-mode as well, if
you factor in the additional complexities of term-mode.

Complexities?

Since term-mode delivers your input to the shell a character at a time,
that means that you can’t just type Emacs commands! If you fire up

https://www.gnu.org/software/emacs/manual/html_node/emacs/Grep-Searching
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/emacs/Terminal-emulator

444 keith waclena

term-mode for the first time, and think, “How does this mode work? I
know, I’ll type C-h m (describe-mode) as usual!”, it won’t work. The
C-h is immediately passed to your shell (where it almost certainly
deletes the character to the left of your cursor), and the m will then
be inserted at the prompt. If you type C-a and your cursor goes to
the beginning of the line, that’s not Emacs doing it: the C-a went
directly to your shell and your shell moved the cursor. You can’t type
a M-x command because that gets passed to your shell (zsh has its
own M-x command, for example). Neither <up> nor C-p will move
back into the transcript. You get the idea. If you’re new to term-

mode you might have a lot of trouble figuring out how to “get back to
Emacs”.363 363 Almost as tricky as figuring out how

to exit vim!Obviously a shell that isolates you from all the powerful syner-
gistic interactions of Emacs commands would be more of a liability
than a help — you wouldn’t be able to “use Emacs” until you quit
the term-mode shell! — so there’s a way to solve the problem.

Line Mode versus Char Mode

At any moment, the terminal emulator is one of two “sub-modes”364. 364 Not real Emacs “Modes”; the sub-
modes are just clever manipulations of
the term-mode major mode.

It starts up in Char Mode, the “raw” sub-mode, in which (almost)
every character is sent directly to your shell (this is indicated in the
Mode Line where it says “Term: char”), but you can switch to Line
Mode to make it act like shell-mode: almost all control characters are
interpreted normally by Emacs and commands are only sent to the
shell when you hit RET. You can toggle back and forth between these
two “modes” at will:

C-c C-j (term-line-mode) switch to Line Mode (mnemonic (for
nerds): Control-j is ASCII “line feed”)

C-c C-k (term-char-mode) switch to Char Mode (mnemonic: K for
Char, or “the key next to C-j”)

I said above that in Char Mode, almost every character goes direct
to the shell. But obviously C-c is an exception, since you can use
C-c C-j; there are several other commands on the C-c prefix in Char
Mode, including all the shell-mode commands (so C-c C-c sends
a SIGINT, etc). Additionally, C-x is an exception, so you can change
Windows and suchlike easily; it has a few additional convenience
bindings, like C-x M-x being bound to execute-extended-command.

Disadvantages of the Terminal Emulator

The terminal emulator is a bit of a trade-off. If you spend a lot of
time in the shell running Curses programs, you’ll find the terminal

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Term-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/M-x

use gnu emacs the plain text computing environment 445

emulator invaluable. But the less you do in the shell and the more
you do in an Emacs-native manner (as this book is intended to en-
courage), the more fiddly you may find the need to switch between
Char Mode and Line Mode. Additionally, term-mode is not well in-
tegrated with Tramp (see Remote Shells below), and the transcript
commands (C-c C-o, etc) don’t work as cleanly, because the shell can
use escape sequences in ways that can’t be perfectly predicted and
coped with — the transcript can end up looking strange (this doesn’t
really interfere with working in the terminal, it’s just wonky).

Myself, I basically don’t need any Curses applications (thanks to
Emacs alternatives), so I prefer M-x shell with it’s powerful tran-
script and lack of term-mode fiddlyness.

Remote Shells

If you are editing a remote file via Tramp, any shell commands you
execute, whether by M-!, M-&, M-x shell, or M-x eshell (and also
dired), will transparently execute on the remote host. This is frankly
almost miraculous when you first try it, and I feel like I’m under-
selling this amazing feature by saying so little about it. But what
more can I say? It just works automatically. As a simple demo, open
a remote file (to a Unix host for this demo) with Tramp and say M-!

uname -n; it will display the remote hostname — not the local host-
name! See Tramp for details.

Eshell

Switching to Eshell marked a milestone for me: from then on I dropped
all my crufty curses-based programs and switched to much more pow-
erful Emacs alternatives. I now use Emacs everywhere to the point that
it even is my window manager. Having a consistent environment well
glued together really empowers you. — Pierre Neidhardt

Finally, I need to mention the exotic M-x eshell. M-x shell is bril-
liantly integrated into Emacs via the combination of excellent sub-
process support and comint-mode, but taking those for granted, it’s
a rather simple thing: Emacs just sits between you and your shell.
After hooking it up, the shell, which is almost certainly a program
written in C, does all the heavy lifting of running programs, redirect-
ing input and output, setting up pipelines, etc.

That was too easy for John Wiegley; his eshell is a true, native
Emacs shell implemented in Elisp; it’s not an external program. Its
command language is a wild hybrid of Unix shell and Elisp, and has
kind of amazing support for redirecting command output directly to
Emacs Buffers and the like. It’s well-integrated with Tramp. Not only

https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://ambrevar.xyz/emacs-eshell/index.html

446 keith waclena

does it interpret your shell commands, but it also lets you run Elisp
commands and mix them with shell commands! This is a really novel
shell that has some very clever ideas, but as a result, it takes a little
getting used to. Many people who really give it a fair trial are very
devoted to it; doing that is on my TODO list.

References

Wiegley, John. 2020. Eshell. Cambridge, MA: Free Software Founda-
tion. https://www.gnu.org/software/emacs/manual/eshell.html.
Read in Emacs with M-x info-display-manual RET eshell RET.

https://www.gnu.org/software/emacs/manual/eshell.html

Browsing the Web

Probably most people spend more time in a web browser than any
other application. While this book is intended to encourage you to
move all of your computing life inside Emacs, I have to admit that
the most unyielding application in this plan is the web browser.

Emacs has at least two viable web browsers (one built-in), but
most of them don’t support Javascript, which means that not all
web sites are fully functional. In particular, you can forget about
doing any shopping in Emacs for now.365 But I do a large amount 365 Another way Emacs saves you

money?of my web browsing in Emacs. Many sites don’t require Javascript
to function. Emacs web browsing is great for tech blogs and news
sites, and in fact being Javascript-free can be a distinct advantage: 1.
you’ll almost never see an advertisement in an Emacs browser, and 2.
browsing without Javascript is more secure (since many attacks from
malicious web pages require it) and preserves more of your privacy.

Two different applications exemplify the two (current) approaches
to writing an Emacs web browser:

• Emacs-w3m is a front-end to the external w3m text-mode browser.
It’s somewhat complex to install but, w3m being written in C, is
pretty fast.

• EWW is a browser written in Emacs Lisp that’s built-in and ready
to run. This is the browser I use (I used to use Emacs-w3m): it
works great, is completely keyboard-controllable, and when you
find a web page that requires Javascript to work, one keystroke
pops it open in your preferred external browser: what have you
got to lose?

EWW: Emacs Web Wowser

EWW was originally implemented by Gnus author Lars Magne Inge-
brigtsen: hence the silly name EWW: Emacs Web Wowser. An EWW
Buffer, like that in Figure 50, is recognizably both an Emacs Buffer
and a web page and many of your intuitive actions and keystrokes
will work as expected: TAB from link to link, SPC to page through,

https://en.wikipedia.org/wiki/JavaScript
http://w3m.sourceforge.net/index.en.html

448 keith waclena

Figure 50: Browsing the Web with
EWW

and RET or a mouse-click to follow a link. While there’s no Javascript
support, EWW does handle cookies, submit forms, and display im-
ages.

But many web browser features are handled in a more Emacs-ish
manner. In particular, browser tabs are Buffers. The default Buffer is

eww, and when you click on a link, the new page re-uses the same
Buffer. You can open a link in a “new tab”—that is, a new Buffer—if
you like.

If you’re using desktop-save-mode, all your EWW Buffers will be
saved when you exit, and restored when you next fire-up Emacs. By
default, the restoration of the Buffer contents is done lazily; this is
because fetching and rendering many Buffers full of HTML will slow
down your startup. So after restarting, when you switch to an EWW
Buffer it will look empty, or at most contain a string of text telling
you what’s going on. Just type g (eww-reload) to restore your web
page. If you’d prefer to sacrifice startup speed to get all your EWW
Buffers reloaded automatically, Customize eww-restore-desktop.

Entry Points

The main entry point for EWW is M-x eww, which prompts for a URL
or search keywords. So you can invoke something like:

M-x eww RET https://www.gnu.org/software/emacs/ RET

or perhaps:

M-x eww RET gnu emacs web browsers RET

M-s M-w (eww-search-words) will do a web search for the contents
of the Active Region or else prompt you just like M-x eww.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Saving-Emacs-Sessions
https://www.gnu.org/software/emacs/manual/html_node/emacs/EWW
https://www.gnu.org/software/emacs/manual/html_node/emacs/Word-Search
https://www.gnu.org/software/emacs/manual/html_node/emacs/EWW

use gnu emacs the plain text computing environment 449

The default search engine is the privacy-focused DuckDuckGo;
you can Customize eww-search-prefix to change that.

M-x eww-open-file is equivalent to giving M-x eww a file:// URL,
but you don’t need to type the file:// part, and of course you’ll be
able to use Completion for the filename.

The command M-x eww-list-bookmarks let’s you fire-up EWW on
one of your EWW bookmarks (see EWW Bookmarks below) and you
can also use URLs in the standard Emacs Bookmarks facility.

You can also invoke EWW from outside Emacs—from an external
shell’s command line, from scripts, or from the xdg-open(1) com-
mand. A suitable invocation is:

emacs --no-desktop -f eww-browse URL

This of course fires up a fresh Emacs; you can also do this via emacsclient(1)

with a little more fiddling, which might be trickier to script366: 366 emacsclient doesn’t support the
same -f option. But hey, what are you
doing outside of Emacs anyway?emacsclient --eval '(eww "URL")'

There are many more implicit entry points to EWW via the Browse
Url subsystem. If you configure EWW as (one of) your default
browsers, then you can open web pages from Dired, Email mes-
sages, M-x find-file-at-point, and many other places; see also Goto
Address Mode.

Using the Browser

What do you do with a web page once you’ve pulled it up? First
and foremost, you read it. You can scroll through the Buffer with the
usual commands, and use Incremental Search to search within the
page. Like most Emacs applications, EWW’s Major Mode inherits
from special-mode and so supports its usual helpful bindings for
scrolling the Window. EWW has a wealth of its own key bindings;
see Table 51.

Page Display

While you’re reading, you may want to change the way the display
looks. You can change the fonts from variable-pitch (proportional,
the default) to fixed-pitch with F (eww-toggle-fonts),367 M-C (eww- 367 I always want fixed-pitch fonts here

and have Customized shr-use-fonts.toggle-colors) let’s choose between accepting the web page’s pre-
ferred color scheme or not368, and you can toggle images on and off 368 I disable all web page color choices

by Customizing shr-use-colors.with M-I (eww-toggle-images).369

369 Surprise! I like images. But a quick
M-I can be very handy to vanish those
pointless stock-photo web header
images.

Those of you who read languages other than English may occa-
sionally need to correct a bogus character-set encoding with E (eww-
set-character-encoding) or toggle the paragraph direction with D

(eww-toggle-paragraph-direction).

https://duckduckgo.com/
https://www.gnu.org/software/emacs/manual/html_node/emacs/EWW
https://www.freedesktop.org/wiki/Software/xdg-utils/
https://www.gnu.org/software/emacs/manual/html_node/emacs/FFAP

450 keith waclena

Type Key Action
Page Display F toggle Fonts

M-C toggle Colors
M-I toggle Images
E correct character Encoding
D toggle paragraph Direction
R Reader mode

Navigation <tab> move Point to next link
<backtab> move Point to previous link
RET follow the link at Point
C-u RET open this link in another browser
C-u C-u RET open this link in a new Buffer
G M-x eww

d Download the object of this link
w copy URL of link to kill ring
i browse to the Image at Point
C-u i copy URL of Image to kill ring
& open this page in another browser

“Tabs” C-u M-x eww open a web page in a new Buffer
M-RET open link at Point in a new Buffer
s switch to a different “tab” (with completion)
S list all EWW “tabs”

History l go back (Left) to previous page
r undo l by going Right
H list history of previous pages

Site Navigation n go to “Next” page
p go to “Previous” page
u go to this page’s parent
t go to this site’s Top (home) page

Bookmarks b Bookmark this page
B list EWW Bookmarks
M-n goto Next EWW bookmark
M-p goto Previous EWW bookmark

Miscellaneous g revert (reload) the web page
q quit the browser window
w copy URL of this page to kill ring
v View HTML source of this page
C view Cookies

Org Mode C-c C-x C-w translate region to org mode
C-c C-x M-w . . . the same

Table 51: EWW Key Bindings

use gnu emacs the plain text computing environment 451

The page display command I use the most is R (eww-readable),
which implements the reader mode familiar from other web browsers.
Just plain EWW is already kind of gloriously like reader mode, but R
is great for zapping all the menus and other navigation from the top
of the page. Just use l (eww-back-url) to restore the full page.

Navigating Links

You can navigate from link to link with TAB (shr-next-link) and S-

TAB (shr-previous-link) (or any other motion or search commands!)
and of course RET (eww-follow-link) will follow the link and open
the new page in the same Buffer. With a single prefix argument, RET
will open the link in another web browser (presumably external to
Emacs), like & (below) does for the current page. With two prefix
args (C-u C-u RET), RET will open the link in a new Buffer, like M-RET

below. G (eww) lets you enter a new URL or search to be opened in
this Buffer.

Instead of browsing the content of the link at Point, d (eww-download)
will download it to the eww-download-directory, which you can Cus-
tomize. If Point isn’t on a link, it will download the current web page
(as HTML).

When Point is on an image, + and - scale the image size; r will
rotate the image 90° at a time; and i (shr-browse-image) will browse
to that image directly, from which page you could perhaps download
it. With a prefix argument, i copies the URL of the image to the Kill
Ring.

Likewise, w (eww-copy-page-url) will copy the URL of the link at
Point to the Kill Ring, or, if Point is not on a link, the URL of the page
you’re looking at.

Sometimes, after following a link, you’ll find that EWW is not
up to handling that web page, typically because it depends heavily
on Javascript. The solution for these cases is & (eww-browse-with-
external-browser), which pops up the current page in another web
browser, probably outside of Emacs. But which browser? It uses the
Browse URL facility’s secondary browser, which you’ve presumably
configured (if necessary) to your liking; see below.

Managing “Tabs” (EWW Buffers)

If you invoke M-x eww (or G in an EWW Buffer) with a prefix argu-
ment, i.e. C-u M-x eww, your web page will come up in a new Buffer,
preserving your other EWW Buffers. You can think of these Buffers
as browser “tabs”. The new Buffer will be named according to the
usual scheme, by default with a numeric suffix like *eww*<2>; feel
free to rename this Buffer to whatever you like. When you’re follow-

https://www.gnu.org/software/emacs/manual/html_node/emacs/EWW
https://www.gnu.org/software/emacs/manual/html_node/emacs/EWW

452 keith waclena

ing a link, M-RET (eww-open-in-new-buffer) or C-u C-u RET will
open that link in a new Buffer.

Obviously you can “switch tabs” using any Buffer switching com-
mand, but from an EWW buffer you can switch with s (eww-switch-
to-buffer), which has the advantage of offering up (via Completion)
only your EWW Buffers, and showing their URLs with their Buffer
names. S (eww-list-buffers) brings up a Buffer with a line for each
EWW Buffer, showing their page titles as well. Just hit RET on the line
of the web page you want to switch to. (You can also invoke M-x eww-

list-buffers from outside of EWW.) This is probably the friendliest
way to switch tabs.

Browser History

The left- and right-arrow icons of the standard web browser are just
the two EWW commands l (eww-back-url) and r (eww-forward-
url): l goes left—back—to the web page that was previously dis-
played in the current EWW Buffer, and r lets you undo that by going
right. H (eww-list-histories) pops up a new Buffer with the history
of this Buffer’s previous pages: their titles and URLs, just like the S

command does for “tabs”.

Web Site Navigation

EWW has convenience functions for navigating the structure of a
web site. When a web site has next-page and previous-page links,
whether represented as text or graphical arrows or the like, you can
use EWW’s n (eww-next-url) and p (eww-previous-url) commands
to follow those links. The u (eww-up-url) command likewise follows
a page’s “up” link and t (eww-top-url) follows its “home” link.
Needless to say, these commands can’t be guaranteed to work with
every site—they depend on the web site author having clearly labeled
those links in the site’s HTML metadata.

EWW Bookmarks

You can bookmark the current web page with b (eww-add-bookmark).
This is an EWW-specific bookmark, not a standard Emacs Bookmark,
but you can also add the current web page to your Emacs Bookmarks
with the usual C-x r m (bookmark-set), or do both: your choice. The
B (eww-list-bookmarks) command pops up a Buffer of all EWW-

specific bookmarks that’s similar to the S and H Buffers. You can
also navigate sequentially through your EWW bookmarks with M-n

(eww-next-bookmark) and M-p (eww-previous-bookmark), which I
think is a weird idea: is the sequence of your web browser bookmarks

https://www.gnu.org/software/emacs/manual/html_node/emacs/Bookmarks

use gnu emacs the plain text computing environment 453

significant to you? To me these feel almost like a way of jumping to a
random bookmark, but YMMV.

Miscellaneous EWW Commands

EWW supports the common special-mode binding of g to Revert
your Buffer, which in this case means to reload the page, and the
usual q to quit the window. w will copy the URL of the current page
to the Kill Ring, but only if Point is not on a link. You can view the
HTML source of the current page in an *eww-source* Buffer with v

(eww-view-source). There’s a very powerful function for Org Mode
users: C-c C-x C-w (org-eww-copy-for-org-mode) will copy the
text in the Active Region to the Kill Ring, translating all links to Org
syntax.

Finally, the command C (url-cookie-list) pops up a Buffer dis-
playing all the cookies that Emacs has received in this session; see
HTTP Cookies for details.

EWW From the Command Line

If you’d like to invoke EWW outside of Emacs from the shell com-
mand line, you can use this trivial script (I name it ~/bin/eww):

#!/usr/bin/env sh

CREATE=

case "$1" in

-c) shift; CREATE=-c ;;

--) shift ;;

-*) exit 124 ;;

esac

exec emacsclient $CREATE --eval '(eww-browse-url "'"$*"'" (quote (4)))'

Now you can say things like:

$ eww https://www.gnu.org/software/emacs/

or:

$ eww gnu emacs web browsers

and it will open EWW in an existing Frame of your running Emacs,
assuming you’re running the Emacs Server; if you’d prefer it to open
a new Frame, add the -c option. If you don’t run the Server, just
change emacsclient $CREATE to emacs --no-desktop and it’ll start
up a fresh Emacs for your (this will of course be slower).

454 keith waclena

Browse URL

URLs can be found anywhere in Emacs. They might be in the text
of some file you’re editing, or in the documentation of an Emacs
command, or in an email. You might be about to type one in. The
Browse URL subsystem’s job is to make it easy for you to browse
these URLs. Browse URL also typically handles clickable links that
are actually URLs rather than internal Emacs links. It predates EWW
and so has extensive support for external web browsers (though it
also supports EWW).

The fundamental Browse URL command is, appropriately enough,
M-x browse-url, which prompts you for a URL, with a default that
comes from the text at Point: so if Point is in or next to a URL, that
will be the default. You can edit it, or zap it and reenter a URL from
scratch, or yank a URL from the Kill Ring, as you like. When you hit
RET, the URL will be opened in your “preferred web browser”. But
what is your preferred web browser?

With no Customization, Browse URL will try to choose a suit-
able one for you. Strangely (in my opinion), as of this writing, it
will never choose EWW! The default is first guided by your op-
erating system: if you’re running Microsoft Windows, it will use
the default Windows web browser370; if Mac OS, the default Apple 370 Unless you’re using Cygwin, or are

running Emacs in WSL.browser. If you’re running Unix, it will use the browser specified the
by the freedesktop.org XDG specification371, falling back to a list of 371 I.e., whatever xdg-open(1) would

run.commonly-installed browsers like firefox(1), chromium(1), KDE,
chrome(1) and finally lynx(1) running in a terminal.

You should give Browse URL a test-run and see if you like the
browser that’s chosen for you:

M-x browse-url RET https://www.gnu.org/software/emacs/ RET

If you’re not happy, you should Customize the variable browse-

url-browser-function and change it.
There’s also a notion of your secondary web browser choice: vari-

ous commands make it easy for you to occasionally open a URL in
this other web browser—for example, in EWW, by following a link
at Point with C-u RET. Setting a secondary browser especially makes
sense if you choose EWW as your primary browser. For example,
I set my secondary browser to be firefox(1), which I use for web
sites that require Javascript. I recommend Customizing browse-url-

secondary-browser-function.
Now you’re ready to use the fleet of Browse URL commands. In

addition to plain old browse-url, you can use the following:

M-x browse-url-at-point browse the URL at Point; like browse-

url, but doesn’t prompt.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Browse-URL
https://en.wikipedia.org/wiki/Cygwin
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://www.gnu.org/software/emacs/manual/html_node/emacs/Browse-URL

use gnu emacs the plain text computing environment 455

M-x browse-url-of-file render the current Buffer, presumably of
HTML, in your browser.

M-x browse-url-of-buffer like browse-url-of-file, but works
when the Buffer isn’t visiting a file, or the Buffer is narrowed.

M-x browse-url-of-region render, in your browser, the HTML in
the Region

M-x browse-url-of-dired-file in a Dired Buffer, open the file on
this line in your browser; this is bound to W in dired-mode.

Additionally, when looking at a URL, M-x find-file-at-point is
another entry point to Browse URL; see Find File at Point.

You can also explicitly invoke Browse URL to use a specific browser
by calling one of the commands in Table 52.

M-x Command Browser
browse-url-chrome chrome(1)

browse-url-chromium chromium(1)

browse-url-default-macosx-browser Mac OS open command
browse-url-default-windows-browser Windows open command
browse-url-elinks elinks(1) in a terminal
browse-url-epiphany Gnome web browser
browse-url-firefox firefox(1)

browse-url-generic your custom browser
browse-url-kde KDE web browser
browse-url-mozilla old mozilla browser
browse-url-text-xterm text-mode browser in an xterm(1)

browse-url-text-emacs text-mode browser in an Emacs terminal
browse-url-w3 old all-Elisp browser
browse-url-xdg-open xdg-open(1)

eww-browse-url EWW

Table 52: Browse URL Browsers

The browse-url-text-xterm command fires up any text-mode web
browser, named by browse-url-text-browser. The default value is
lynx; IMHO better choices are elinks(1) (which does a really nice
layout) or w3m(1) (which does images in the terminal).

The browse-url-generic command is what you can use to con-
figure some other exotic web browser (perhaps the Emacs-inspired
Nyxt, or Opera). Just set browse-url-generic-program to the name
of your browser, and optionally set browse-url-generic-args as
needed. Most of the other browser-specific commands in Table 52

have their own browse-url-*-args variable as well, in case you want
to add some options.

Browse URL not only handles http: (and https:) URL schemes,
but also the mailto: scheme; when presented with a mailto: URL

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Dired-Features
https://www.gnu.org/software/emacs/manual/html_node/emacs/FFAP
https://nyxt.atlas.engineer/
https://en.wikipedia.org/wiki/Opera_(web_browser)

456 keith waclena

it invokes your preferred mailer; see Mail, News, and Feeds. You can
teach it to handle other URL schemes by Customizing browse-url-

handlers; this variable is flexible enough for you to define cus-
tom handling of specific web sites too, perhaps sending Javascript-
dependent shopping domains to your secondary browser automati-
cally.

Goto Address Mode

I mentioned that URLs can appear in almost any Buffer, and the
Browse URL commands will let you jump to them. The Minor Mode
goto-address-mode is a nice enhancement: it colorizes all the URLs
(and also email addresses) in your Buffer, making them more notice-
able, and when Point is at one of these locations, C-c RET (goto-
address-at-point) invokes browse-url.

You can turn it on everywhere by invoking global-goto-address-

mode in your Init File, but I find that a bit too sweeping; after all,
many application Buffers, like EWW and Gnus, have their own in-
built facility. I turn it on in Shell Modes and, via goto-address-

prog-mode, in programming language Major Modes, where it’s only
activated in comments and strings.

Init File
;; goto-address-mode is handy in these modes

(dolist (hook '(shell-mode-hook eshell-mode-hook))

(add-hook hook #'goto-address-mode))

(add-hook 'prog-mode-hook #'goto-address-prog-mode)

HTTP Cookies

All Emacs commands that fetch data from a web server use functions
from the url package, and handling of all HTTP cookies is done in
these functions.

While cookies are obviously essential for sites requiring authenti-
cation, managing shopping carts, and the like, since such sites almost
always require Javascript, they don’t work in EWW. For most other
sites, cookies are unnecessary and probably only used to track you. I
block all of them and this has never yet interfered with my use of any
web site in EWW. You can block them with this Init File snippet:

(setq url-cookie-untrusted-urls '(".*")) ; cookies: generally a bad idea

If you feel less extreme about this than I do, you can Customize this
variable to block only specific domains or URLs instead.

Note that if you don’t use EWW and configure Browse URL to in-
voke an external web browser, then cookies will of course be handled
by that browser, and not by Emacs.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Goto-Address-mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Goto-Address-mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Goto-Address-mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Browse-URL
https://en.wikipedia.org/wiki/HTTP_cookie

use gnu emacs the plain text computing environment 457

User Options

There are many User Options related to web browsing that you
might want to Customize. Do M-x customize-group for the eww,
browse-url, and url-cookie groups.

References

Free Software Foundation. 2020. EWW. Cambridge, MA: Free Soft-
ware Foundation. https://www.gnu.org/software/emacs/manual/
eww.html. Read in Emacs with M-x info-display-manual RET eww

RET.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/eww.html
https://www.gnu.org/software/emacs/manual/eww.html

The Calendar, Diary, and Clocks

Figure 51: Calendar for the Epoch

The calculation of dates and holidays is extremely complex, and
Emacs has a correspondingly powerful Calendar subsystem to handle
this. You can pop up a three-month calendar, centered on today, in a
compact Window with M-x calendar. Add a prefix argument and it
will prompt you for a year and month on which to center (instead of
today). Figure 51 shows the Calendar window for the Unix Epoch372, 372 The official birthday of the Unix

operating system.which is 00:00:00 UTC on 1 January 1970. The highlighted dates are
holidays.

The Emacs Calendar can display any month since January of the
year 1 of the Common Era; the Calendar always displays the Gre-
gorian calendar, even for a date at which the Gregorian calendar
did not exist (i.e. before October 1582). However, the Calendar sup-
ports eleven additional calendar systems—Bahá’í, Chinese, Coptic,
Ethiopic, French Revolutionary, Hebrew, Islamic, ISO, Julian, Mayan,
and Persian—and can translate between them.

Besides displaying the calendar for any month, the Calendar sub-
system can count days between arbitrary dates, display holidays and
astronomical information, convert dates to and from the other cal-
endar systems, generate printed calendars (in HTML, PDF, or LATEX
forms), and it also has a powerful Diary to keep track of your ap-
pointments. There’s also a timeclock facility for tracking your hours,
but I think that’s better done in Org Mode.

Setting Up the Calendar

You should Customize the two variables calendar-latitude and
calendar-longitude to exploit some of the Calendar’s more interest-

https://www.gnu.org/software/emacs/manual/html_node/emacs/Calendar/Diary
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix
https://www.gnu.org/software/emacs/manual/html_node/emacs/Time-Intervals

460 keith waclena

ing features; these values are easy to get from a gazetteer373, map or 373 Yes, it’s a thing!

mapping software, or from Wikipedia in many cases. The easiest way
to express these values is as a Lisp vector, as in this example:

(setq calendar-latitude [43 02 north]) ; = 43°02'49"N

(setq calendar-longitude [76 08 west]) ; = 76°08'40"W

While you’re at it, you might set calendar-location-name to a string
naming your location; this is totally optional and merely makes some
displays look a little nicer.

(setq calendar-location-name "Syracuse, NY")

You can of course set these via M-x customize-variable instead.
I also recommend these Init File settings so that you’ll get col-

orized holidays and diary entries by default:
Init File

(setq calendar-mark-holidays-flag t ; colorize holidays in the calendar

calendar-mark-diary-entries-flag t) ; also diary entries

Motion

Moving around in the Calendar is designed by analogy to the tex-
tual object motion commands you’re already familiar with, from the
smallest units (days = characters) to the largest (years = pages). All
these commands take numeric arguments, so it’s easy to jump for-
ward six months, say, with C-u 6 M-}. See Table 53. You can jump

Backward Unit Forward Analog
C-b, ← day C-f, → (character)
C-p week C-n (line)
M-{ month M-} (paragraph)
C-x [year C-x] (page)
Beginning Ending
C-a week C-e (line)
M-a month M-e (sentence)
M-< year M-> (buffer)

Table 53: Calendar Motion Commands

directly to a specific date with the commands in Table 54.

Counting Days

You can count the number of days between any two dates in the
Calendar. Just move to one of the days, set the Mark, move to the
other day, and invoke M-= (calendar-count-days-region).

https://en.wikipedia.org/wiki/Gazetteer
https://www.gnu.org/software/emacs/manual/html_node/emacs/Counting-Days

use gnu emacs the plain text computing environment 461

Command Action
g d go to specific date
o center calendar on specific month
g D go to specific day number in year
g w go to specific week number in year
. go to today
> scroll one month forward
< . . . backward
C-v scroll three months forward
M-v . . . backward

Table 54: Specific Calendar Dates and
Scrolling

Holidays

Emacs knows a lot of holidays, both secular United States holi-
days and major religious holidays in the Bahá’í, Chinese, Chris-
tian, Islamic, and Jewish traditions.374 Use M-x customize-group 374 The Package Manager has packages

defining holidays for an additional 16

countries or religions.
RET holidays to choose the ones you’re interested in. When you’re in
the Calendar, you can display them with the commands in Table 55.

Command Action
h display Holidays for date at point
a display All holidays in view in another window
x mark holidays in view
u unmark . . .

Table 55: Calendar Holiday Commands

My recommended setting for calendar-mark-holidays-flag above
marks (colorizes) the holidays in the Calendar Window by default, so
you won’t need the x command unless you unmark them with u (for
a clearer view perhaps).

M-x holidays pops up the same window as the a command in
the Calendar Window, but you can use it without first opening the
Calendar; M-x list-holidays prompts you for a range of years and
generates a Buffer listing all the known holidays in that time range.

The Emacs Ephemeris: Astronomical Information

The Calendar can compute the times of sunset and sunrise, the
phases of the moon375, and the dates of upcoming eclipses. 375 Crucial information for any program-

mer. . .

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Holidays
https://www.gnu.org/software/emacs/manual/html_node/emacs/Holidays
http://www.catb.org/jargon/html/P/phase-of-the-moon.html

462 keith waclena

Command Action
S display time of Sunrise and Sunset
M-x calendar-sunrise-sunset-month . . . for every day this month
M-x sunrise-sunset . . . for today
C-u M-x sunrise-sunset . . . for a given date
C-u C-u M-x sunrise-sunset . . . and a given location
M display Moon phases in calendar view
M-x lunar-phases . . . the same
C-u M-x lunar-phases . . . for a given month and year

Table 56: Calendar Astronomical
Commands

M-x lunar-phases includes upcoming eclipses in its listing; here’s
an example:

Wednesday, July 6, 2022: First Quarter Moon 9:15pm (CDT)

Wednesday, July 13, 2022: Full Moon 1:33pm (CDT)

Wednesday, July 20, 2022: Last Quarter Moon 9:24am (CDT) ** Eclipse possible **
Thursday, July 28, 2022: New Moon 12:55pm (CDT)

Friday, August 5, 2022: First Quarter Moon 6:08am (CDT) ** Eclipse **
Thursday, August 11, 2022: Full Moon 8:31pm (CDT)

Thursday, August 18, 2022: Last Quarter Moon 11:41pm (CDT) ** Eclipse **
Saturday, August 27, 2022: New Moon 3:17am (CDT)

Saturday, September 3, 2022: First Quarter Moon 1:09pm (CDT)

Saturday, September 10, 2022: Full Moon 4:54am (CDT)

Saturday, September 17, 2022: Last Quarter Moon 4:56pm (CDT)

Sunday, September 25, 2022: New Moon 4:54pm (CDT)

To and From Other Calendar Systems

On the g keymap are commands to go to a date expressed in one of
the non-Gregorian calendar systems, and on the p keymap, to print
(i.e. display) the current date in another system. Converting to the

Goto Print Calendar System
g a p a astronomical (Julian) day number
g b p b Bahá’í
g C p C Chinese
g k p k Coptic
g e p e Ethiopic
g f p f French Revolutionary
g h p h Hebrew
g i p i Islamic
g c p c ISO commercial calendar
g w ISO commercial calendar week
g j p j Julian
g m . . . p m Mayan
g p p p Persian

p o various other calendars

Table 57: To and From Other Calendar
Systems

Mayan calendar is complex enough to require its own keymap of

https://www.gnu.org/software/emacs/manual/html_node/emacs/Lunar-Phases

use gnu emacs the plain text computing environment 463

seven extra bindings; see “Mayan Calendar” in the Emacs manual.
The p o command displays the selected date in all the other calen-

dar systems; here’s the result for the Epoch:

Day 1 of 1970; 364 days remaining in the year

ISO date: Day 4 of week 1 of 1970

Julian date: December 19, 1969

Astronomical (Julian) day number (at noon UTC): 2440588.0

Fixed (RD) date: 719163

Hebrew date (before sunset): Teveth 23, 5730

Persian date: Dey 11, 1348

Islamic date (before sunset): Shawwal 22, 1389

Bahá’í date: Sharaf 2, 126

Chinese date: Cycle 77, year 46 (Ji-You), month 11 (Bing-Zi), day 24 (Xin-Si)

Coptic date: Kiyahk 23, 1686

Ethiopic date: Takhsas 23, 1962

French Revolutionary date: Primidi 11 Nivôse an 178 de la Révolution, jour du Granit

Mayan date: Long count = 12.17.16.7.5; tzolkin = 13 Chicchan; haab = 3 Kankin

Printed Calendars

There are a variety of commands to generate “printed” calendars
in HTML, LATEX, and (indirectly via LATEX), PDF. See the Manual for
details.

The Diary

Emacs has a Diary facility that allows you to record appointments,
reminders, meetings, birthdays, and the like. They can be marked in
the Calendar376 and the appointments for the day can be displayed 376 And will be with my recommended

setup.in a pop-up Window via M-x diary. Diary entries are entered in your
diary file, defined by diary-file, in a flexible format that allows for
complex dates and repeats. Here’s an example diary file:

4/15 TAX DAY

*/1 Submit Monthly Time Card

%%(diary-anniversary 10 20 1874) Charles Ives' Birthday: %d years old

Wednesday

2:30pm-3:30pm Staff Meeting

5:00pm-7:00pm Study Group

The easiest way to make Diary entries is from inside the Calendar via
the commands in Table 58. See “Format of Diary File” in the Emacs
manual for a description of the syntax used in manual edits.

It must be said that for many Emacs users, myself included, the
Org Mode Agenda has largely replaced the functionality of the Di-
ary. The Agenda can incorporate the Diary, so anything you record

https://www.gnu.org/software/emacs/manual/html_node/emacs/Mayan-Calendar
https://www.gnu.org/software/emacs/manual/html_node/emacs/Writing-Calendar
https://www.gnu.org/software/emacs/manual/html_node/emacs/Diary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Format-of-Diary-File
https://www.gnu.org/software/emacs/manual/html_node/org/Agenda-Views

464 keith waclena

Command Action
d Display Diary entries for this date
M-x diary . . . the same
s Show the diary file
m Mark all dates with diary entries
u Unmark all calendar marks
i d Insert a diary entry for this Date
i w . . . for this day of the Week (e.g. any Thursday)
i m . . . for this day of the Month (e.g. any 12th)
i y . . . for this day of the Year

Table 58: Calendar Diary Commands

with the Diary will show up if you display the Agenda; this Init File
snippet does the job:

Init File
(setq org-agenda-include-diary t) ; incorporate the diary into the agenda

If you use the Agenda and don’t already use the Diary, the main
reason to use it occasionally is because the Diary’s ability to express
complex recurring dates exceeds Org’s.

Appointments

Emacs can notify you of any Diary entries with an attached time of
day through the Appointments subsystem.377 A certain amount of 377 The Org Agenda uses the same

notification system.time before the appointment occurs, a notification window will pop
up and the bell will ring. More notifications will pop up until the
appointment time has passed. You can customize the details via M-x

customize-group RET appt, but this Init File snippet will enable the
defaults:

Init File
(appt-activate +1) ; appointment notifications, please

(require 'notifications) ; also via desktop notifications

On most operating systems, this snippet will also generate OS notifi-
cations.378 378 Unix users should make sure D-Bus

is enabled.You can add a nonce appointment as a sort of alarm without go-
ing to the trouble of creating a Diary or Agenda appointment with
M-x appt-add; it will prompt you for the time, a description, and the
number of minutes of lead time. Any upcoming appointment notifi-
cations for the day can be canceled with M-x appt-delete; you get to
confirm the deletions one at a time, so if you just answer “no” to all
of them, this is also usable as a way of checking which appointments
are coming up. Note that these nonce appointments don’t persist
across Emacs sessions!

https://www.gnu.org/software/emacs/manual/html_node/emacs/Appointments
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Appointments
https://www.gnu.org/software/emacs/manual/html_node/emacs/Appointments

use gnu emacs the plain text computing environment 465

Customization

The Calendar is highly customizable; M-x customize-group RET

calendar offers you the option to change how everything is dis-
played, marked, and named, and much more.

Holidays are of particular note. The default holidays are those
common throughout the United States, and only a small set of
the (many) religious holidays known to Emacs are included. M-x
customize-group RET holidays makes it easy to include or exclude
any of these.

You can readily add your own holidays, perhaps local holidays,
holidays for your workplace or university, birthdays of your friends
or favorite celebrities. I think it’s easiest to do this in your Diary;
second easiest is in your Init File.

The Calendar is capable of computing even the most complicated
of holiday dates (like Passover and Easter), and you can use its pow-
erful functions for your own dates. Here, for example, is an entry for
the date of the US Presidential Election:

(add-to-list 'calendar-holidays

'(holiday-sexp

'(if (zerop (% year 4))

(calendar-gregorian-from-absolute

(1+ (calendar-dayname-on-or-before

1 (+ 6 (calendar-absolute-from-gregorian

(list 11 1 year)))))))

"US Presidential Election"))

Clocks and Time

In addition to calendar features, Emacs has a variety of clocks for
displaying the current time.

Mode Line Clock

You can display the current time in the Mode Line; see Optional Mode
Line Features.

World Clock

M-x world-clock pops up a *wclock* Buffer displaying the current
time in various world time zones:

Seattle Friday 05 August 12:14 PDT

New York Friday 05 August 15:14 EDT

London Friday 05 August 20:14 BST

Paris Friday 05 August 21:14 CEST

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization

466 keith waclena

Bangalore Saturday 06 August 00:44 IST

Tokyo Saturday 06 August 04:14 JST

The times in this Buffer update continuously as long as the Buffer
is displayed in a Window. You can M-x customize-variable RET

world-clock-list to choose your own preferred time zones.

Time Stamps in Files

You can have Emacs update a time-stamp line every time you save a
file. If you enable this feature, then when you save this file:

Meeting Notes

Time-stamp:

* Boring Topic

Blah blah...

the Time-stamp: line will be updated to today’s date:

Time-stamp: 2022-10-13 17:25:09

If you edit and save the file again, the time-stamp will be updated.
The magic string “Time-stamp:” and the format of the time and date
are of course customizable. The facility can be enabled on a file-by-
file basis.

It used to be common for programmers to have time-stamps in all
their source files, but in my opinion, this feature is pretty annoying
now that we keep all our files under version control, and I no longer
use it. After all, your VCS knows exactly when you last modified
each file, and a C-x v l (vc-print-log) will show you the time-
stamp. Also, most typesetters will allow you to readily include the
publication date in formatted versions of your documents.

But, if you think this feature sounds useful, see “Time Stamps” in
the Emacs manual.

Timeclocks

Emacs also has several facilities for clocking your work hours and
recording how much time you spend on some task or project. Just
invoke M-x timeclock-in when you start work—it’ll prompt you for
a project name—and when you’re done, M-x timeclock-out, or M-x
timeclock-change to switch to working on a different project.

The timeclock log is stored in the file named in timeclock-file in
s simple format:

i 2022/10/13 17:38:27 test1

o 2022/10/13 17:39:31

https://www.gnu.org/software/emacs/manual/html_node/emacs/VC-Change-Log
https://www.gnu.org/software/emacs/manual/html_node/emacs/Time-Stamps
https://www.gnu.org/software/emacs/manual/html_node/emacs/Time-Intervals
https://www.gnu.org/software/emacs/manual/html_node/emacs/Time-Intervals
https://www.gnu.org/software/emacs/manual/html_node/emacs/Time-Intervals

use gnu emacs the plain text computing environment 467

i 2022/10/13 17:39:33 test2

o 2022/10/13 17:41:21 done

If you’re a programmer, you can whip up code to process that data
easily enough, but Org Mode has a much more powerful timeclock
facility that’s integrated with your Org Agenda and includes report
generation, effort estimates, and data export to CSV for incorporation
into external applications.

I keep sticking to Emacs because it has one huge ace up its sleeve
that other editors simply cannot match. Emacs has a package that
helps me organize my workflow, focus my note-taking and even keep
a timeclock for how long I spend working on tasks. This package is
called Org mode. — Christine Dodrill

References

Reingold, Edward M. and Nachum Dershowitz. 2018. Calendrical Cal-
culations: The Ultimate Edition. Cambridge, UK: Cambridge University
Press..

Hinman, Lee. 2017. Clocking Time with Org-mode. https://writequit.
org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.

html.

https://xeiaso.net/blog/org-mode-flow-2020-09-08
https://writequit.org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.html
https://writequit.org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.html
https://writequit.org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.html

Version Control

Version control is an essential component of software engineering
and, I would say, of any sort of authoring, from articles and essays to
novels and oversized books about Emacs. I’ll assume you’re already
using version control; if not, I strongly encourage you to check out
the Wikipedia article and get started.

Version control systems (VCS) are nowadays almost synonymous
with Git, but there are in fact many other VCS’s to choose from. I
prefer Mercurial (Hg) myself, and I also still use the ancient RCS
for certain cases. But I have to use other VCS’s occasionally (Git
especially), when I’m working with other people’s code.

Though there are two broad categories of VCS’s—the modern
merge-based style, and the older lock-based—most VCS’s have analo-
gous features. But wildly different user interfaces: keeping several of
them straight is a daunting task.

Emacs to the rescue! The Emacs version control interface, VC, tries
valiantly (and quite successfully) to provide a common abstraction
over these varying systems so that, regardless of the system in use for
a given file or directory, you can use the same commands to perform
the most common operations. Most of the frequently used commands
work appropriately across all supported VCS’s, but some of them
aren’t consistently supported yet: you may need to occasionally pitch
in with the underlying commands via M-! (shell-command) or M-x
shell.

There are some slight differences in the way VC commands work
with older lock-based systems like RCS; since few people use such
VCS’s these days, I’ll describe only merge-based systems in detail. As
always, the Manual has the complete story.

From here on, VC refers to Emacs’s VC commands, and VCS to the
underlying version control system being used in any given case.

Supported Version Control Systems

Out of the box, Emacs VC supports nine version control systems; see
Table 59. Other systems (for example, Darcs and Fossil) have support

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Mercurial
https://en.wikipedia.org/wiki/Revision_Control_System
https://www.gnu.org/software/emacs/manual/html_node/emacs/Version-Control
https://www.gnu.org/software/emacs/manual/html_node/emacs/Single-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://en.wikipedia.org/wiki/Darcs
https://www.fossil-scm.org/home/doc/trunk/www/index.wiki

470 keith waclena

in the Package Manager.

Abbreviation Version Control System
RCS GNU RCS
CVS Concurrent Versions System
SVN Apache Subversion
SCCS Source Code Control System
SRC SRC379

Bzr GNU Bazaar
Git Git
Hg Mercurial
Mtn Monotone

Table 59: Supported Version Control
Systems

379 I’ve never heard of this one! Appar-
ently a front-end to RCS?(Of course, you need to install the VCS’s themselves (any that you

want to use) outside of Emacs via your operating system’s package
manager.)

It must be mentioned that one of the modern killer apps for Emacs
is Magit, a bespoke version control package for Git (only). People
are fanatical about it, and while I prefer the simpler VC abstraction
for the limited amount of work I need to do with Git, I’d be remiss
not to mention it. Just install it from the Package Manager as usual.
But from here on out, I’ll be discussing VC only, and everything will
apply equally to any of the above VCS’s.

VC “Modes”

VC provides two main modes of interacting with the underlying
VCS, which I’ll call File Mode and Project Mode. File Mode applies
when you issue VC commands from a file-visiting Buffer, but also
when you’re in a Dired Buffer (where it applies to the file at Point).
Project Mode applies when you’re in the special vc-dir-mode Buffer
created by C-x v d (vc-dir), which is for interacting with the whole
repo at once. We’ll consider these two modes in separately.

VC File Mode in One Command

The most frequent VCS actions are cleverly subsumed under one
state-smart command, C-x v v (vc-next-action). You can spend
much of the day issuing that one command repeatedly, and only
occasionally delving into the other VC commands.

C-x v v performs the appropriate next action on the file visited
in the current Buffer (or, if you’re in a Dired Buffer, the file at Point).
The action depends on the version control state of the file in this
order:

https://en.wikipedia.org/wiki/Killer_application
https://en.wikipedia.org/wiki/Magit
https://www.gnu.org/software/emacs/manual/html_node/emacs/VC-Directory-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-VC-Editing

use gnu emacs the plain text computing environment 471

File State C-x v v Action
No Repository! Initialize the repo
Unregistered Register the file
Unmodified No action
Modified Commit changes

So suppose you’re working on a project in an existing VCS reposi-
tory, and you create a new file with C-x C-f (find-file) as usual.
After typing in some content, you hit C-x v v; since the file is new, it
gets registered with the repo—corresponding to the add command of
most systems.

After some more editing, you issue another C-x v v—this time,
VC commits your changes (corresponding to the commit or check-in
command). This pops up two new Buffers in two new Windows:

log-edit-files, which displays the names of the files being com-
mitted (in the File Mode case, only one filename: that of the file
you’re editing) and *vc-log*. The latter will be the selected Win-
dow, and you’re expected to type in a commit message or summary
of your changes380. 380 Emacs allows this message to be

empty, if your VCS doesn’t object.Typically the first line of the commit message is a short pithy sum-
mary, and you can use any number of lines following it to describe
your changes in as much detail as you like. When you’re done, just
type the usual C-c C-c (log-edit-done) and your changes are safely
committed to the repo; both of the Windows will vanish. If you’ve
changed your mind, you can abort the commit with C-c C-k (log-
edit-kill-buffer), which will also clean up the Windows.

That’s it! You can work for much of the day with just this one
command.

More VC File Mode Commands

If the only thing you ever did with your VCS is add and commit
files, you could dispense with the VCS entirely! The whole point is
that you occasionally need to use other features of version control,
primarily to save your butt when you screw up. The major categories
of butt-saving include:

• comparing the current state of your file to a previous state (a.k.a.
diffing)

• blaming somebody else for problems in your file381 381 My personal favorite. . .

• reverting that person’s changes so you can fix them

• getting an idea of the history of changes to the file (viewing the
log)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Visiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

472 keith waclena

• restoring a previous version of your file

• tagging revisions

• pushing and pulling from remote repos

• and the most complex, most annoying, and probably most impor-
tant thing: working with branches

Key Category Action
C-x v v jack of all trades: DWIM
C-x v i Init Initialize a repo or add a file
C-x v = Diff show diff of this file
M-x vc-ediff . . . in Ediff
C-x v D . . . of all files
C-x v h . . . of just this Region
C-x v l Log show change Log of this file
C-x v L . . . of all files
M-x vc-log-search search the text of log entries
C-x v a update the ChangeLog file
C-x v ~ View show an older version in another buffer
C-x v g assign blame for each line (annotate)
C-x v u Revert Undo changes to this file
C-x v x File delete (X-out) this file via the VCS
M-x vc-rename-file rename a file
C-x v G ignore this file Glob
C-x v I Remote describe (log) Incoming changes
C-x v + . . . pull (add) them in
C-x v O describe (log) Outgoing changes
C-x v P Push them out
C-x v r Branch checkout (Retrieve) a given branch
C-x v s tag this file
C-u C-x v s make current changeset a new branch
C-x v m merge in a given branch
C-x v M D show a diff of the common ancestor
C-x v M L show the log of the common ancestor

Table 60: VC File Mode Commands

Initializing a Repository

When you’re beginning an entire new project, you need to choose
which VCS you’re going to use and create a new repository. The first
step is to create a new project directory. Just create your first project
file in a non-existent directory with C-x C-f /new/directory/new-file;
as usual, Emacs will open a Buffer visiting new-file and ask if it

use gnu emacs the plain text computing environment 473

should create the directory /new/directory—say yes, of course. Now
register the file with a simple C-x v v (or if you’re feeling deliberate,
C-x v i (vc-register), which exists solely to register new files and

repos). Emacs will respond in the Minibuffer with:

/new/directory/new-file is not in a version controlled directory.

Use VC backend:

and will offer all the supported backends for Completion: Bzr, Git,
Hg, RCS, SCCS, SRC, and SVN. Choose the one you want and you
now have a new repo.

Diffing and Comparing

It’s easy to compare the current file to the most recent checked-in ver-
sion: just do C-x v = and you’ll get a colorized diff-mode Buffer; see
Diffing and Merging for details. C-x v D pops up a multi-file Buffer
with all the modified files in the project. You can also diff the Region
with C-x v h to avoid getting overwhelmed with detail.

The diff-mode Buffer features some 28-odd useful commands, but
if you want something fancier, M-x vc-ediff shows the comparison
via the super-powerful Ediff subsystem. I rarely do this382; diff- 382 Though I use Ediff daily in other

contexts.mode itself is pretty powerful. Among the more useful commands
are C-c C-c to jump from the diff hunk at Point to its location in the
file (visiting the file as needed), and you can revert individual hunks
in the file one-by-one; this is just a diff-mode feature, so see Simple
Diffing for details.

All of these commands compare the saved files in the working
directory with the most recent checked-in versions. With a Prefix
Arg, you can specify any previous version, identified however your
VCS does it (revision numbers, hexadecimal idents, tag names). This
can be more convenient to do from a VC log Buffer.

Examining the Logs

Analogously to VC diffing, C-x v l shows the VCS log for the cur-
rent file, and C-x v L does the same for all the files in the project
(the changesets). There are many handy commands to navigate and
manipulate the log Buffer; be sure to do C-h m (describe-mode). The
one I use the most is =, which generates a diff against the revision at
Point.

M-x vc-log-search will search the text of log entries; this com-
mand is not supported by all VCS’s.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Registering
https://www.gnu.org/software/emacs/manual/html_node/emacs/Diff-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Old-Revisions
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help

474 keith waclena

Viewing Older Revisions

From a log Buffer you can pop up the complete text of the older ver-
sion at Point with f (log-view-find-revision). The text is popped
up in a new Buffer with a name in the form FILENAME~VERSION~.

Outside of the log Buffer, you can pop up a FILENAME~VERSION~

buffer with C-x v ~ (hence the mnemonic behind the key bind-
ing383), which prompts for a version number, ident, or tag. 383 Admittedly, many of the C-x v

bindings are not very mnemonic. . .C-x v g annotates the file (or as I like to think of it, assigns blame).
It pops up a buffer that shows, for each line of the file, who last
changed it, the revision id, and the date when it was changed. Each
line is colored via a heat-map palette, with blue lines being the oldest
and red the youngest. From any given line you can get a complete
diff or jump to the location in the file; see Figure 52.

Figure 52: Assigning Blame

Discarding Changes

If you decide that all the changes you’ve made to your file, through
whatever number of saves, were a bad idea, you can revert the file
to the most recent checked-in version with C-x v u. This is different
from M-x revert-buffer, which only reverts to the last saved ver-
sion of the file. C-x v u actually replaces the file on disk with the
checked-in version, and then reverts the Buffer from it.

Other File Operations

In addition to registering a new file, you can remove a file from ver-
sion control with C-x v x; this removes the file from the working
directory and informs the VCS of the fact that it’s no longer part of
this changeset. Of course your VCS will allow you to recover older
versions of the file at any time in the future.

It’s also important to be able to tell the VCS to ignore certain files
and not consider them as part of the repo; this is typically done for
build artifacts, backup files, and the like (otherwise, your VCS will
constantly be reminding you to check these files in). Unlike most of

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting

use gnu emacs the plain text computing environment 475

the other commands, C-x v G doesn’t operate on the current file, but
rather always prompts you for a filename or glob pattern, and in-
forms the VCS to ignore it from now on. A Prefix argument prompts
for and removes a previously ignored pattern.

Tagging

You can tag the current checked-in version of your project with C-x

v s. To tag means to give a symbolic name to a changeset. You’ll be
prompted for the name. This command can also be used to create a
new branch, as described next.

Branching and Merging

Modern VCS’s use branches to manage multiple independent lines
of development (your project might have a production branch, a
development branch, and a bugfix branch, say). Retrieving a branch
means replacing the files in your working directory with those of a
different branch. You do this with C-x v r, which prompts you for a
branch label (what this is depends on your VCS; it can typically be a
version number or identifier, or a symbolic name).

You can’t retrieve any branches unless you’ve made some. You can
do this with C-u C-x v s, which will make the current changeset a
new branch of development. If you want to branch off from an earlier
changeset, first switch to that changeset with C-x v r

Eventually, two branches will need to be merged together (say,
to apply the code from a tested bugfix branch into the production
branch). Merging is the most complicated task a VCS can do, and
VC’s C-x v m command just initiates the process; you’ll have to han-
dle overlap conflicts and the like manually, undoubtedly with the
help of the other VC commands we’ve discussed and the various
Emacs Diff commands. This includes C-x v M D, which shows a diff
of the common ancestor of the two branches being merged, and C-x

v M L, which shows the ancestor’s log.

Working With Remote Repositories

Modern distributed VCS’s (DVCS’s) have the potential to work with
remote repos, which may merely be in a different location in the file
system but may also be on a different host entirely. You can check
whether or not there are remote changes to pull with C-x v I; if
there are, a log Buffer pops up displaying them. C-x v O pops up a
log of any outgoing changes.

476 keith waclena

If there are outgoing changes reported by C-x v O, C-x v P will
push them to the remote, and if C-x v I reports incoming changes,
C-x v + will pull them.384 384 You’re not required to do the log

command before doing a push or pull.But where is the remote? Most DVCS’s record the current target
for pushes and pulls, and this is what will be used. If a remote is not
recorded, VC will prompt you for the command to use. A Prefix arg
will always prompt for the command.

VC Project Mode

Most of the VC File Mode commands we’ve discussed apply to the
file visited in the current Buffer (or to the file at Point in a Dired
Buffer). But sometimes you want to perform VC actions on several or
all of the files in your repository at once. This is the job of C-x v d

(vc-dir).
This command pops up a special *vc-dir* Buffer for the direc-

tory you specify. By default, this is the Buffer’s default-directory.
Depending on your VCS, you may want to always work at the root
directory of your project; you can use C-x p v (project-vc-dir) in-
stead to make sure you always invoke vc-dir in the root directory of
your project.

When popped up, the *vc-dir* Buffer lists all the interesting files
in the repo—it’s like the status command of your VCS—that is,
modified files, unknown files (which you probably want to either add
to the repo or ignore), and those with a recently changed status. In
particular, files that are up-to-date aren’t listed.

The Buffer has a header at the top that summarizes the state of the
repo, and then lists the files in a two-column form that might look
like this:

VC backend : Hg

Working dir: ~/txt/emacs-tutorial/

Parent : 312:caa775acf936 tip

: VC: older revs, remotes

Branch : default

Commit : 2 modified, 2 unknown

Update : (current)

Phases : 5 draft

./

edited TODO

unregistered cute-cat.jpg

edited emacs-tutorial.org

unregistered images/vc-blame.png

The first column shows the VC status and the second, the file name.
You can see that I’ve modified (“edited”) two files, and have two

https://www.gnu.org/software/emacs/manual/html_node/emacs/VC-Directory-Mode
https://www.gnu.org/software/emacs/manual/html_node/emacs/Project-File-Commands

use gnu emacs the plain text computing environment 477

unknown (“unregistered”) files. cute-cat.jpg is probably an image
file I accidentally saved to this directory; I’ll want to eventually move
it elsewhere with Dired, or I could delete it from here with the d

command385. images/vc-blame.png, however, is a new file that I 385 But who wants to delete a cute cat
picture?want to add to this repo.

vc-dir-mode has all the key bindings from Special Mode, a num-
ber of commands for marking files, and a bunch of shorter keystrokes
that are equivalent to the C-x v File Mode commands. You can use
the C-x v File Mode key bindings if you’re more used to them. Ta-
ble 61 lists the key commands (and their File Mode equivalents)386. 386 There are more that I haven’t listed;

use C-h m.Typically you mark multiple files (like you do in Dired for example)
to form a fileset, and then use a command to operate on the entire set.
Most of the commands apply to the entire marked fileset, to the file
at Point if no files are marked, or to all the files in the Region if it is
Active.

As you’d expect, the mark command is m and the unmark com-
mand is u; marking a directory line (including ./) is equivalent to
marking all the displayed files in that directory. M marks all the files
with the same status, and U unmarks them; with a Prefix arg, these
two commands apply to all displayed files.

VC Grepping

You can Isearch and Query Replace from the *vc-dir* with the
search and replace commands in Table 61, but you can also invoke
the Grep facility of your VCS. VC provides a command for Git (M-x
vc-git-grep), but other VCS’s don’t have this yet. For Mercurial, I
just do:

M-x grep RET hg grep -n REGEXP

All the grep-mode commands work, including Writable Grep. You
can probably do something similar for another VCS.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

478 keith waclena

Key A.K.A Category Action
m Marks Mark this file (or all in active region)
M Mark all files with this status
u Unmark this file (or in active region)
U Unmark all files with this status
v C-x v v Next jack of all trades: DWIM
RET, e, f Visit Find file(s) at point
o . . . in Other window
S Search Searches this file(s)
M-s a C-s . . . isearch across them
M-s a C-M-s . . . with a regexp
Q Replace Query replace this file(s)
i C-x v i Init add a file(s) to repo
= C-x v = Diff show diff of this file(s)
D C-x v D . . . of all files
l C-x v l Log show change Log of this file(s)
L C-x v L . . . of all files
G Ignore ignore this file(s)
d C-x v x Delete Delete this file
I C-x v I Remote describe (log) Incoming changes
+ C-x v + . . . pull them in
O C-x v O describe (log) Outgoing changes
P C-x v P . . . push them out
B s C-x v r Branch checkout (Retrieve) a given branch
B c C-x v s tag this file(s)
C-u B c C-u C-x v s make Current changeset a new branch
B l show Log for this branch
x hide up-to-date and ignored files
C-c C-c kill the running VCS command

Table 61: VC Dir Commands

Diffing and Merging

If you’re a programmer or system administrator, you probably
spend a lot of time comparing files, or as we call it, diffing. Even non-
programmers would benefit from diffing, since anyone who creates
and edits files ought to be using version control, and version control
implies diffing.

The basic Unix tool for diffing is diff(1) and its variants; the
GNU implementations are the standard.

Diffing is very simple: you run diff(1) on two files and eyeball
the output. Emacs improves on this by providing excellent syntax
highlighting and colorization. But diffing very often implies the need
to merge the differences to create a new, combined, file, and merging
is work. Emacs, in my opinion, has the best merge tool: the Ediff
subsystem. I probably do at least one merge every day—sometimes
several—and when I’m occasionally forced to use some other merge
tool387 I just want to crawl into a hole. 387 Usually the hated vimdiff(1). . .

Simple Diffing

The simple Emacs front-end to diff(1) is M-x diff: it prompts for
two filenames, the new file and the old388, and runs diff(1) on them. 388 If you don’t know which file is

newer, it doesn’t matter which you
name first.

It pops up a Buffer named *Diff* with nicely colorized output.
There are three other main entry points to the Diff subsystem.
In a file-visiting Buffer, M-x diff-backup diffs the file with its

backup file—this is way of answering the question, “what changes
have I made since the last time I saved it?”—while M-x diff-buffer-

with-file diffs the (possibly as yet unsaved) Buffer with its file on
disk (I only discovered this command recently and it’s very handy).
Finally, M-x diff-buffers generates a diff of two Buffers, even if
they aren’t visiting files; this saves you from writing Buffers out to
temporary files, having to invent two file names and remember to
clean them up afterwards.

Additionally, you can conveniently do a diff from Dired with =

(dired-diff), and from VC with C-x v = (vc-diff) and C-x v D

(vc-root-diff); various other Modes and Packages make it easy to

https://en.wikipedia.org/wiki/Diff
https://www.gnu.org/software/emacs/manual/html_node/diffutils/index.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Old-Revisions
https://www.gnu.org/software/emacs/manual/html_node/emacs/Old-Revisions

480 keith waclena

jump into Diff as well.

Diff Mode

Let’s consider a file containing the text of Bertolt Brecht’s Der Pflau-
menbaum:

Der Pflaumenbaum

Im Hofe steht ein Pflaumenbaum,
Der ist so klein, man glaubt es kaum.
Er hat ein Gitter drum,
So tritt ihn keiner um.
Der Kleine kann nicht größer wer’n,
Ja - größer wer’n, das möcht’ er gern!
’s ist keine Red davon:
Er hat zu wenig Sonn’.

Dem Pflaumenbaum, man glaubt ihm kaum,
Weil er nie eine Pflaume hat.
Doch er ist ein Pflaumenbaum:
Man kennt es an dem Blatt.

– Bertolt Brecht

I copied the file and changed the text according to (my understand-
ing of) the German orthography reform of 1996, and then I ran M-x

diff on the two files; Figure 53 is the result.

Figure 53: Der Pflaumenbaum Diff

Simple Diff Buffers are in diff-mode, which does a lot more than
just colorful highlighting. First let’s consider what a diff—also called
a patch— looks like.

A patch consists of a diff each for one or more pairs of files. Each
file pair (here “file” for short) has a file header which is followed by
the diff, which consists of a set of hunks.

In Figure 53 the file header is this part:

diff -u /home/keith/txt/emacs-tutorial/brecht1 /home/keith/txt/emacs-tutorial/brecht2

--- /home/keith/txt/emacs-tutorial/brecht1 2022-07-05 18:43:44.497204554 -0500

+++ /home/keith/txt/emacs-tutorial/brecht2 2022-07-05 18:43:44.497204554 -0500

https://en.wikipedia.org/wiki/German_orthography_reform_of_1996
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Diff-Mode

use gnu emacs the plain text computing environment 481

File brecht2 is the newer of the two files. The header shows the exact
diff(1) command used and the files’ modification dates. The ---

and +++ characters relate the files to the lines of the hunks.
A hunk is a group of consecutive lines that differ between the

pair of files; the hunk always comes in the midst of a number of
preceding and following lines that the files have in common; these
common lines provide useful context.389 389 Technically, this is the Unidiff format

generated by running diff(1) with the
-u; in my opinion, this is by far the best
format.

In Figure 53 there’s only one hunk, which starts with:

@@ -4,8 +4,8 @@

This means that the hunk consists of 8 lines starting at line 4 of the
old file (hence the -, as in the file header), and 8 lines starting at line
4 of the new file (the +).

In the hunk, lines beginning with - are only present in the old file,
and lines beginning with + are only present in the new file. Lines
beginning with spaces are lines of context common to both files.

From the Diff Buffer, you can actually act on the hunks—undo
them in the new file one hunk at a time or apply them backwards
to the old file. But most of these actions are easier to do via the very
powerful Ediff subsystem.

Ediff

The biggest difference between the Ediff subsystem and the simple
Diff commands is that, instead of using a single Diff Buffer contain-
ing a patch as its interface, Ediff presents multiple Buffers side-by-
side, each containing a colorized version of the old file or the new
file. Figure 54 shows the result of invoking M-x ediff RET brecht1

RET brecht2.

Figure 54: Der Pflaumenbaum Ediff

Ediff is much more intuitive. There’s no need to interpret the syn-
tax of the output of diff(1): the left window shows the file brecht1

https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points

482 keith waclena

and the right, brecht2, nicely colorized. The reddish colors show the
old hunks, and the greenish the new.

There’s also a third window in this Frame, displaying a 1-line

Ediff Control Panel Buffer. When you start up Ediff, this will
be the selected Window; the Buffer is in ediff-mode and is typically
where you issue commands to operate on the two file Buffers. If you
type ? in this Buffer, it will expand to show an explanatory menu of
Ediff commands that are valid in this Buffer (only). Each file Buffer
will be in the Major Mode appropriate to the file and you can in fact
switch to either of the Buffers and edit them.

When Ediffing two files it’s very common to want to copy bits
of one file to the other. Suppose you’ve got the same file on two
different machines; you may have made changes to both the remote
file and the local copy, but not exactly the same changes: you’ve let
the two files get out of sync! Ediff makes it easy, with a keystroke, to
copy one diff from file A to file B, another from B to A, and you can
jump between the two file Buffers and make any editing tweaks you
like. This is a simple way of merging two files.

Personal Preferences

I should mention that Figure 54 isn’t what you’ll see out of the box
if you invoke M-x ediff. By default, the Control Panel will open
in its own dedicated Frame. I absolutely hate this, and it’s frankly
unusable with a tiling window manager like mine, so I configure it to
open all Ediff windows in the current Frame.

Also by default, the two file Windows are shown one above the
other; I much prefer them side-by-side as in Figure 54: as you move
from diff to diff, Ediff keeps them neatly aligned and it’s easier to
visually compare them.

This Init File snippet imposes my preferences on you:
Init File

;; don't use a separate Frame for the control panel

(setq ediff-window-setup-function 'ediff-setup-windows-plain)

;; horizontal split is more readable

(setq ediff-split-window-function 'split-window-horizontally)

Ediff also radically changes your current Window Configuration;
when I quit Ediff, I like to restore my windows to what they were
before, with this code snippet:

Init File
;; restore window config upon quitting ediff

(defvar ue-ediff-window-config nil "Window config before ediffing.")

(add-hook 'ediff-before-setup-hook

(lambda ()

(setq ue-ediff-window-config (current-window-configuration))))

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://en.wikipedia.org/wiki/Tiling_window_manager

use gnu emacs the plain text computing environment 483

(dolist (hook '(ediff-suspend-hook ediff-quit-hook))

(add-hook hook

(lambda ()

(set-window-configuration ue-ediff-window-config))))

Finally, Ediff will often newly visit one or two files for the purpose
of diffing, which clutters up your Emacs. I enable the Ediff Janitor,
which will offer to cleanup these files for you when you quit.

;; offer to clean up files from ediff sessions

(add-hook 'ediff-cleanup-hook (lambda () (ediff-janitor t nil)))

Ediff Entry Points

Ediff has a dozen useful entry points, listed in Table 62.

M-x ediff-files Files diff two files
M-x ediff . . . the same
M-x ediff-files3 diff three files
M-x ediff3 . . . the same
M-x ediff-backup diff this file with its backup file
M-x ediff-current-file diff this buffer with its file on disk
M-x ediff-buffers Buffers diff two Buffers
M-x ediff-buffers3 diff three Buffers
M-x ediff-regions-linewise diff two Regions in 1 or 2 Buffers
M-x ediff-regions-wordwise . . . but word-by-word
M-x ediff-revision diff this Buffer with an older revision
M-x ediff-windows-linewise Windows diff two Windows line-by-line
M-x ediff-windows-wordwise . . . word-by-word

Table 62: Ediff Entry Points

You can diff files, Buffers, Windows, distinct Regions of Buffers
and Windows, and directories (see below); you can also diff files and
Buffers in terms of their Version Control revisions. Ediff can compare
two files, or three. The common use case for a three-file comparison
is when two files share a common ancestor. This occurs frequently
when you have a new branch of a project under version control—
say, a bugfix branch—and you need to compare the file where you’re
fixing the bug with the original buggy version: both files will have a
common ancestor in their parent revision, and adding this ancestor
to the comparison allows Ediff to make very accurate guesses and
predictions when you’re merging.

Ediff can compare the contents of Buffers, whether the Buffers are
visiting files or not, and it can even compare two Regions, whether
in the same Buffer or not. Doing this sort of thing in the shell usually
requires creating (and cleaning up) temporary files; Ediff takes care
of that for you.

484 keith waclena

Ediff can also compare Windows; this is sort of a shortcut for
comparing Regions of Buffers, and it’s also an easy way of comparing
two parts of the same Buffer: just split the Buffer into two Windows,
and line up the parts you want to compare at the tops of the two
Windows. When comparing Windows, you can compare wordwise
(which is nice and detailed) or linewise (which is more like a normal
diff).

Finally, Ediff can compare entire directories, and has powerful
bookkeeping features to help you keep track of where you are in the
comparison; see below.

The Expanded *Ediff Control Panel*

Move around | Toggle features | Manipulate

=====================|===========================|=============================

p,DEL -previous diff | | -vert/horiz split |a/b -copy A/B's region to B/A

n,SPC -next diff | h -highlighting | rx -restore buf X's old diff

j -jump to diff | @ -auto-refinement | * -refine current region

gx -goto X's point| ## -ignore whitespace | ! -update diff regions

C-l -recenter | #c -ignore case |

v/V -scroll up/dn | #f/#h -focus/hide regions | wx -save buf X

</> -scroll lt/rt | X -read-only in buf X | wd -save diff output

~ -swap variants | m -wide display |

=====================|===========================|=============================

R -show registry | = -compare regions | M -show session group

D -diff output | E -browse Ediff manual| G -send bug report

i -status info | ? -help off | z/q -suspend/quit

For help on a specific command: Click Button 2 over it; or

Put the cursor over it and type RET.

Whatever your Ediff entry point, everything is controlled from the

Ediff Control Panel. Do as the one-line Panel Window suggests
and hit ? to expand it. Wherever the Panel refers to “X”, it means
for you to type the letter A, B, or C to specify one of the Buffers being
compared.

Most of the “Move around” commands are obvious: you step
back and forth through the files, diff by diff, or jump to a diff by its
number (shown in the Control Panel’s Mode Line. You can scroll the
file Windows pairwise, or bring the current diff back to the center.
The ~ (ediff-swap-buffers) command swaps the two files in the
two Windows, so you can have the old file on the left (where I expect
it) or on the right.

The commands in the “Toggle features” section change the ap-
pearance of the files or of the Windows. The | (ediff-toggle-split)

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 485

command toggles the Windows between side-by-side (the default
with my Init File) or one-over-the-other, and m (ediff-toggle-wide-
display) full-screens the Ediff Frame. h (ediff-toggle-hilit) and @

(ediff-toggle-autorefine) cycle through a variety of different ways
to display the highlighting and refinement of the different words
in the diffs. # # (ediff-toggle-skip-similar) and # c (ediff-
toggle-ignore-case) toggle between ignoring whitespace or case
differences. The # f (ediff-toggle-regexp-match) lets you focus on
only the diffs that match a Regular Expression (temporarily hiding
the diffs that don’t), and # h is the inverse. The letters A, B, and C

toggle the read-only status of the corresponding file Buffers.
The “Manipulate” section has the crucial commands for choosing

and copying individual diffs. Lowercase a and b copy the current diff
to the other file. So in Figure 54 typing a would cause file A’s diff
number 1—with the umlauts—to replace file B’s orthographic reform
version. Upon changing your mind, you could then restore file B’s
diff with the command r b. Conversely, typing b would replace file
A’s umlauts with B’s umlaut-free version.

At any point, you can edit either file A or file B, so after copying
a diff from the other file, you can tweak it. Invoking * (ediff-make-
or-kill-fine-diffs) (from the Control Panel Buffer) will recompute
the refinement colors of the current diff after an edit, if necessary, and
! (ediff-update-diffs) will recompute all the diffs in both files, just
as if you had quit and re-invoked your Ediff command.

Sometimes a single diff can be quite large and you only want to
copy bits of it from one file to the other; in this case the a or b com-
mands would require you to do a bunch of manual editing after the
copy. When this happens, the = (ediff-inferior-compare-regions)
command can help. It invokes a new, recursive, Ediff session on just
the text of the current diff, within which you can copy the individual
smaller differences using a and b commands. When you’re done, quit
this recursive Ediff with q, and you’re back in the parent Ediff, ready
to continue.

Merging

Your version control system will frequently need you to manually
merge two conflicting files (typically from two branches); so will file
synchronizers, like Syncthing and Unison390 and some operating 390 I use both of these.

system package managers391. The family of Ediff Merge commands 391 Like Arch Linux’s pacdiff(8).

is the way to perform these tasks.
In Figure 55, I’ve invoked:

M-x ediff-merge RET brecht1 RET brecht2

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://en.wikipedia.org/wiki/Syncthing
https://en.wikipedia.org/wiki/Unison_(software)

486 keith waclena

Figure 55: Der Pflaumenbaum Ediff
Merge

It looks like the M-x ediff command of Figure 54 but with an extra
window, called C, which is the result of the merge. In this exam-
ple, Ediff has no way of guessing whether you’d prefer variant A or
variant B so it shows you both possibilities in Buffer C. If you pre-
fer one or the other, just use the a or b commands. With M-x ediff,
those commands update either the A or B buffer, but with M-x ediff-

merge. they update the C Buffer.
In the simplest case, you can just step through all the diffs between

the two files, choosing one from A or one from B in each case. When
you’re done, you quit with q (ediff-quit) and then you can switch
to the C Buffer—your merge—and save it to a file.

Note that if you use neither the a nor the b command for a given
diff, the result of the merge will be the literal text you see in Buffer C,
in our example:

<<<<<<< variant A

Der Kleine kann nicht größer wer'n,

Ja - größer wer'n, das möcht' er gern!

>>>>>>> variant B

Der Kleine kann nicht groesser wer'n,

Ja - groesser wer'n, das moecht' er gern!

======= end

with the <<<< and >>>> characters and all the rest. You can jump
into Buffer C to delete any of these bits, or mix and match the two
variants however you like (perhaps you want to keep the “größer”’s

https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 487

but use the “moecht” with them).
When you finish the merge with q (ediff-quit), Buffer C, actually

called *ediff-merge*, is the result of your merge: you generally want
to save it to a file with C-x C-w (write-file).

If you expand the *Ediff Control Panel* you’ll see that there are
a few extra commands to help with merging.

Ediff Merge Entry Points

There are several entry points to the Merge subsystem; most are anal-
ogous to the Ediff entry points. But take special note of the -with-

ancestors variants. When the two files you’re merging are related to
a common ancestor (typical with version control system merges), you
can use these variants and Ediff will be able make educated guesses
about which variant, A or B, to prefer.

M-x ediff-merge merge two files
M-x ediff-merge-files . . . the same
M-x ediff-merge-files-with-ancestor . . . taking an ancestor into account
M-x ediff-merge-with-ancestor . . . the same
M-x ediff-merge-revisions merge this file with an older revision
M-x ediff-merge-revisions-with-ancestor . . . taking an ancestor into account
M-x ediff-merge-buffers merge two buffers
M-x ediff-merge-buffers-with-ancestor . . . taking an ancestor into account

Table 63: Ediff Merge Entry Points

Integrating Ediff into External Programs

Version Control Systems and such often have a configuration file in
which you can specify your merge tool. You can set this to be Emacs
running ediff-merge or, better, ediff-merge-files-with-ancestor.
Here are two examples of how I do this.

First, for my version control system, Mercurial, I have this stanza
in my config file:

[merge-tools]

emacs.executable = emacs

emacs.args = --no-desktop --eval '(ediff-merge-files-with-ancestor "$local" "$other" "$base" nil "$output")'

The magic strings $local, $other, $base, and $output are replaced
by Mercurial with appropriate file names when it invokes Emacs. See
Starting Emacs! for information about --eval.

I use Unison as one of my file synchronizers, and this line in its
preferences file does the job:

merge = Name * -> emacs --no-desktop --eval '(ediff-merge-files "CURRENT1" "CURRENT2" nil "NEW")'

Here the magic filenames are CURRENT1, CURRENT2, and NEW. Note that
Unison doesn’t provide an ancestor file when it invokes the merge
tool, so I use a different Emacs function.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Save-Commands
https://en.wikipedia.org/wiki/Mercurial
https://en.wikipedia.org/wiki/Unison_(software)

488 keith waclena

Also note that I invoke emacs here, with --no-desktop, rather than
emacsclient. I used to use emacsclient for a quicker startup but I
found it to be too confusing in the already confusing context of file
merging—I prefer a totally clean, empty Emacs! You could invoke
emacs with -q instead, which will skip loading your Init File and get
a very fast startup, as long as you can cope with an uncustomized
Emacs. (My Emacs is so heavily customized that I can barely use an
Emacs invoked with -q, but YMMV.)

Comparing and Merging Directories

You can also Ediff two directories, comparing all pairs of files that
have the same basename. You could of course just manually run
M-x ediff-files on every pair of files yourself, but it would be easy
to miss a pair, or forget where you left off after a break. The Ediff
Directories subsystem does all the bookkeeping for you.

When you fire up M-x ediff-directories, you’ll be asked if you
want to narrow the files to be considered via a Regular Expression;
just hit RET if you want to consider all possible files.

You’ll be presented with a Buffer called *Ediff Session Group

Panel* which lists all the pairs of corresponding files; each pair is
called a session because you’ll (potentially) be doing a complete diff
or merge on it. ? expands a helpful menu of Session Group com-
mands (see Table 64).

D Prep show differences among directories
= = for each session, show which files are identical
= h like ==, but also marks sessions for hiding
h Hiding mark session for hiding (toggle)
x hide marked sessions
C-u x unhide marked sessions
u h unmark all sessions marked for hiding
= h like ==, but also marks sessions for hiding
RET Session start Ediff session at Point
v . . . the same
q quit this session group
m Marking mark session for a non-hiding operation (toggle)
u m unmark all sessions marked for operation
= m like == ==, but also marks sessions for operation
P collect custom diffs of all marked sessions

Table 64: Ediff Session Group Com-
mands

You generally want to start by preparing your Session Group. D

(ediff-show-dir-diffs) pops up a new Buffer that shows you the
remaining files in the two directories that don’t have corresponding
names. You might want to copy any one of them to the other direc-

https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 489

tory, which you can do with a simple C command in this Buffer.
We now want to hide, i.e. exclude from diffing, as many files as

possible.
You should run = h (ediff-meta-mark-equal-files), which will

do a quick comparison of the pairs of files in all the sessions, and
mark, for hiding, the ones that are identical (why waste time running
Ediff on these pairs?).

You should now mark for hiding any non-identical pairs that
you’re just not interested in. A good example would be a version
control subdirectory (like a .git or .hg directory). Just navigate to
these pairs and hit h (ediff-mark-for-hiding-at-pos).

Now hide all those pairs with x (ediff-hide-marked-sessions),
and you’re ready to start Ediffing. Just navigate to each pair in turn
and hit RET to fire up a normal Ediff session. When you’re done (hav-
ing quit the diff session with q), you’ll be taken back to the Session
Group and that Session will be marked as finished.

You can also mark pairs with the Mark commands and then run P

(ediff-collect-custom-diffs) to get a simple Diff Buffer giving you
an overview of the differences amongst all the marked files. This is
also a handy way of generating a patch.

If your selected pairs include any directories, they will be diffed
recursively, creating their own Session Groups.

The bookkeeping done by the Session Groups is invaluable for
managing an otherwise tedious and annoying task. You can easily
take a break from diffing and rejoin your sessions again later; just
run M-x ediff-show-registry. The Ediff Registry shows you all
Ediff sessions you have running. Sadly however, Ediff sessions aren’t
preserved if you quit your Emacs (not even if you’re using Desktop
Mode).

There are several other entry points, which determine which Ediff
command is used on each pair of files.

M-x ediff-directories diff common files in two directories
M-x ediff-directories3 diff common files in three directories
M-x ediff-directory-revisions . . . only files under version control
M-x ediff-merge-directories merge common files in two directories
M-x ediff-merge-directories-with-ancestor . . . using ancestors from a third directory
M-x ediff-merge-directory-revisions merge common files in two directories
M-x ediff-merge-directory-revisions-with-ancestor . . . with ancestors

Table 65: Ediff Directories Entry Points

Patching

In addition to merging, there’s also patching. Suppose Amy and Brid-
get each have a copy of the file foo. Amy makes some changes to foo

that Bridget wants, and instead of giving Bridget the changed file,
Amy gives Bridget a diff392 of Amy’s old foo against her new foo. 392 I.e., the output of diff(1).

In this context, the diff output is called a patch, and Bridget wants to

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/ediff/Other-Session-Commands
https://en.wikipedia.org/wiki/Patch_(computing)

490 keith waclena

apply the patch to her own foo in order to transform it into Amy’s
new version.

This may sound crazy—why doesn’t Amy just give Bridget the
new foo? But this actually does happen fairly frequently, especially
when Amy and Bridget are programmers working on a program
together, or system administrators dealing with a security patch
that needs to be quickly applied. Bridget may have made her own
changes to foo which she wants to keep; applying Amy’s patch pre-
serves Bridget’s changes while applying Amy’s (unless there are line
by line conflicts).

A single patch often contains diffs of several files and all should
be applied at once. Applying patches used to be a lot of work until
Larry Wall wrote patch(1). Ediff has a helpful interface to patch(1).

Either of M-x ediff-patch-file or M-x ediff-patch-buffer will
run patch(1) and then pop up an Ediff showing you the changes
that have been applied393. You can approve the changes or make any 393 It effectively diffs the .orig file patch

creates against the newly patched file.necessary tweaks.
Emacs also makes it easy to generate a patch for one file. You can

do it from Dired: just mark the pair of files you want to be in the
patch and say ! (dired-do-shell-command) with the command diff

-u * and then save the *Shell Command Output* Buffer to a file (or
email it directly from Emacs). The easiest way to generate a patch
containing multiple files is from the ediff-directories Session
Group Buffer.

Emerge

Emacs has another, older, subsystem for merging files called Emerge.
All the Emerge commands begin with emerge-; don’t confuse the
two. Personally I think the Ediff Merge subsystem is far superior, and
I haven’t used Emerge in years, but it is a powerful system in its own
right. YMMV.

Simple Window Comparison

You can also do a simple comparison of two windows with M-x

compare-windows. Arrange your Frame so it’s only displaying the
two Windows you want to compare. In each Window, set Point at
the beginning of the part of the text you want to compare (perhaps
just do M-< (beginning-of-buffer) in each). Now invoke compare-

windows.
Point in each Window will be moved to the first spot in each Win-

dow where the two Buffers differ. Reinvoking compare-windows

jumps to the next difference. In between invocations you can make

https://en.wikipedia.org/wiki/Larry_Wall
https://en.wikipedia.org/wiki/Patch_(Unix)
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/ediff/Major-Entry-Points
https://www.gnu.org/software/emacs/manual/html_node/emacs/Emerge
https://www.gnu.org/software/emacs/manual/html_node/emacs/Comparing-Files
https://www.gnu.org/software/emacs/manual/html_node/emacs/Moving-Point

use gnu emacs the plain text computing environment 491

any changes you like in either Window.
With a prefix argument, compare-windows will ignore differences

in whitespace.
In writing this description I discovered that this apparently simple

command is really quite complex and powerful; see M-x customize-

group compare-windows.

References

• Free Software Foundation. 2021. Comparing and Merging Files.
Cambridge, MA: Free Software Foundation. https://www.gnu.
org/software/diffutils/manual/diffutils.html. Read in Emacs
with M-x info-display-manual RET diffutils RET.

• Free Software Foundation. 2020. Ediff. Cambridge, MA: Free Soft-
ware Foundation. https://www.gnu.org/software/emacs/manual/
ediff.html. Read in Emacs with M-x info-display-manual RET

ediff RET.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/emacs/manual/ediff.html
https://www.gnu.org/software/emacs/manual/ediff.html

Playing Music

Another application domain for Emacs is as a music player. This
mostly means playing from a collection of audio files (mp3s, flacs,
oggs). Nowadays most people use commercial streaming services
(Spotify, Bandcamp, YouTube, Amazon, etc) to play music and may
well own neither any audio files nor even physical CDs or vinyl;
while there are a few Emacs interfaces to such services, the very idea
goes against the grain of the Emacs predilection for free and open file
formats and protocols. If you own your own data, no corporate entity
can take it from you, start charging you (more) money, or just vanish
in a corporate bankruptcy.

Audio data is complex and multifarious, and I know of no Emacs
packages that manipulate the data directly in Elisp.394 That means 394 I actually find that very surprising. . .

that Emacs music players are generally interfaces to external pro-
grams that you’ll need to install via your operating system’s package
manager.

EMMS: Emacs Multimedia System

My preferred music player is EMMS, the Emacs Multimedia Sys-
tem. It has a 4,098-line Info manual, will work with almost any audio
players you happen to have installed, and is perhaps the most Emacs-
native of all the music players I’ve tried: that is, it’s well-integrated
with other Emacs systems, lets you manage its buffers and windows
however you like (rather than requiring a bespoke multi-paned lay-
out), is massively customizable, and everything about it is plain text.

First you need to use your operating system’s package manager to
install at least one audio player. I recommend just installing mplayer,
since it plays some 200-odd audio formats. (But see below for MPD.)

Next, you need to install EMMS itself via the Emacs package man-
ager. Just give this command once:

M-x package-install RET emms RET

(See The Package Manager for more information, including updating
your packages.)

https://www.gnu.org/software/emacs/manual/html_node/emms/index.html
http://www.mplayerhq.hu/

494 keith waclena

Now you need to configure EMMS in your Init File. You can read
the disquisition in the manual, but here’s a configuration I used
before switching to MPD:

(autoload 'emms "emms" nil t nil)
(autoload 'emms "emms-browser" nil t nil)
(with-eval-after-load 'emms

(require 'emms-setup)
(emms-all)
(setq emms-player-list '(emms-player-mplayer))
(setq emms-source-file-default-directory (file-name-as-directory "~/mp3s"))
(define-key emms-browser-mode-map (kbd "SPC") #'emms-browser-toggle-subitems-recursively)
(when (memq system-type '(gnu gnu/linux gnu/kfreebsd))

;; use GNU find for extra speed when possible
(setq emms-source-file-gnu-find find

emms-source-file-directory-tree-function 'emms-source-file-directory-tree-find)))

You’ll need to change ~/mp3s to the directory where you keep your
audio files (EMMS will work with multiple directories; this is just the
default.)

Now restart your Emacs395, and say M-x emms-add-directory- 395 Or instead, set the region around the
entire with-eval-after-load sexp and
say M-x eval-region.

tree; either hit return to add your default music directory (defined
above), or pick any other directory of music files (whether under
your default directory, or elsewhere). This populates the default
playlist with all the files in that directory (recursively). If you’ve
chosen a directory with, say, thousands of audio files, it may take
a while to populate the playlist (and especially to convert simple
filenames to Artist–Title format), but it runs in the background so
you can start using EMMS right away, and the data will be cached, so
the next time you start up EMMS, it will all be loaded quickly.

Now say M-x emms and in the *EMMS Playlist* buffer just move
Point to the song you want to play and hit RET. Of course you can
just use C-s (isearch-forward) or M-x occur or whatever you like
to find your way around, until you get comfortable with the EMMS
searching and browsing commands.

Be sure to check out the manual to learn the basic commands,
how to work with multiple playlists, how to use the browser, display
album covers and lyrics, mark tracks in playlists for bulk operations,
use the tag editor to fix metadata, set bookmarks, play streaming
audio and internet radio, and much more.

Music Player Daemon (MPD)

One of the most popular music players for Unix nerds is Music
Player Daemon (MPD). I’m a big fan of MPD, but its disadvantage
is that it’s somewhat complex to set up and configure. It implements
a client-server interface: the server knows about your music files and
your audio hardware, and any number of clients (CLI, TUI, and GUI)
exist that can talk to the server to control it (play this track, stop play-
ing, randomly play all my Math Rock tracks. . .). This design means

https://www.gnu.org/software/emacs/manual/html_node/emacs/Basic-Isearch
https://www.gnu.org/software/emacs/manual/html_node/emacs/Other-Repeating-Search
https://www.musicpd.org/
https://www.musicpd.org/

use gnu emacs the plain text computing environment 495

that there are many MPD clients, and that the server and client can
be on different machines (so, you can use an MPD client on your
phone to control the server on the Raspberry Pi that’s connected to
your home stereo).

If you’re already using MPD, EMMS can use it instead of the
above mplayer setup and I would recommend that; see below for a
possible configuration.

Emacs also has several other MPD clients; one is built-in: M-x mpc.

Figure 56: M-x mpc

I don’t like its interface: it’s completely undocumented and it pops
up an arrangement of five windows that I just find confusing. You
can instead install ampc from the Package Manager396 and run M-x 396 Just say M-x package-install RET

ampc RET; you only have to do this
once.

ampc — you’ll get an extremely similar bunch of windows (six this
time) but ampc actually has documentation (do C-h P ampc, which
you can do before installing it) and I find it less confusing. There are
at least three more MPD clients in the MELPA package repository
(mpdel, elmpd, and mpdmacs) that I haven’t investigated.397 397 And I’ve written two of my own!

Here’s the EMMS configuration I use with MPD:

(autoload 'emms "emms" nil t nil)

(autoload 'emms "emms-browser" nil t nil)

(with-eval-after-load 'emms

(require 'emms-setup)

(require 'emms-player-mpd)

(emms-all)

(add-to-list 'emms-info-functions 'emms-info-mpd)

(setq emms-player-list '(emms-player-mpd))

(setq emms-player-mpd-music-directory "~/mp3s")

(emms-cache-set-from-mpd-all)

(ignore-errors

(call-process "mpc" nil nil nil "consume" "off")))

https://en.wikipedia.org/wiki/Raspberry_Pi

496 keith waclena

References

Free Software Foundation. 2020. Emms Manual. Cambridge, MA: Free
Software Foundation.. Read in Emacs with M-x info-display-manual

RET emms RET.

Mail and News

One of the big application domains for Emacs is as a Mail User
Agent (MUA), or what we loosely call a mailer. Rather than using
the usual web-based interface to Gmail, Outook, or the like; a tradi-
tional GUI mailer like Thunderbird; or a command-line client like
Mutt; you can leverage all the things Emacs does for you by reading
your mail in Emacs.

A decade or two ago, reading mail in Emacs was more common;
in our modern age, when Email is a commodity run by multinational
megacorporations like Google, Apple, and Microsoft, Emacs mail
definitely isn’t for everybody. That said, you’ll have to pry my Emacs
mailer out of my cold, dead hands.

Even if you don’t want to commit to using Emacs as your MUA,
the Emacs mailers can still be useful. I have a friend who uses Gmail
as his MUA but hit the maximum space limit. Rather than pay for
more space, he exported (and then deleted) all his old mail (Google
uses Mbox format for this) and now happily uses Notmuch in Emacs
to search and read his decade’s worth of archival mail.398 Also, inter- 398 Status report: he now uses Gnus as

his MUA.net mailing lists often make their archives available as downloadable
Mbox files and Emacs makes a great browser for these.

Sending Mail

Being able to compose and send mail directly from Emacs is use-
ful even if you don’t use Emacs to read your mail, and it’s easy to
set up. If you’re doing all your computing in the Lisp Machine, it’s
very annoying to have paste a bunch of text into a web browser (or
worse, compose your text directly in a browser), and probably see it
get mangled into HTML in the bargain.

Configuring SMTP

There are a lot of ways to send email but the most common nowa-
days is remote SMTP. If you use Gmail, Apple, Microsoft, or the like
for your email, you can use their SMTP server to send mail from

https://en.wikipedia.org/wiki/Email_client
https://en.wikipedia.org/wiki/Email_client
https://www.thunderbird.net/en-US/
http://www.mutt.org/
https://en.wikipedia.org/wiki/Smtp

498 keith waclena

Emacs. You’ll need to know:

• your SMTP server name, something like smtp.gmail.com or
smtp.office365.com

• your user name

• your password

Some providers may have additional settings you need to specify
(at this writing, these three are sufficient for Gmail). You may also
need to tweak settings in your provider’s web interface (e.g., Gmail
requires you to enable mail access for “less secure apps”; be sure you
understand the ramifications of this399). 399 Emacs is as secure an app as your

web browser; the “less secure apps”
setting is about installing other apps
from your phone’s app store that might
want to access your email. So just pay
attention to app permissions.

You don’t have to configure these via Customize or in your Init
File; when you send your first email, you’ll be prompted for them,
and Emacs will remember your responses. However, you might want
to use M-x customize-option to configure these two User Options
ahead of time: it will save you some future typing:

user-mail-address your email address (to be filled-in to the emails
you send) in the form user@example.com

user-full-name your name, in the form Joe Blow

Composing Email

Before you can send an email, you need to compose it. The basic
command to pop up a mail composition Buffer is C-x m (compose-
mail); it has as variants C-x 4 m (compose-mail-other-window) and
C-x 5 m (compose-mail-other-frame). The Buffer is called *unsent

mail*, will be in message-mode, and will be initialized with some text
similar to this (you’re Joe in this scenario):

To:

Subject:

From: Joe Blow <joe@example.com>

--text follows this line--

As you’d expect, this is in every way a normal Buffer with some
appropriate key bindings and colorization due to message-mode. (The
From: line may look strange if you haven’t yet configured your email
address and name, as above (you can always just edit the From: line
manually).

Now just fill out your message: add an email address to the To:

line (I’d recommend your own email address for this first test mes-
sage, so you can tell if it worked), add a subject to the Subject: line,

https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sending-Mail
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sending-Mail
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sending-Mail
https://www.gnu.org/software/emacs/manual/html_node/emacs/Sending-Mail

use gnu emacs the plain text computing environment 499

correct the email address in the From: line if necessary, and type
the body of your message after --text follows this line-- (don’t
mess up that line, it’s significant). The word “test” is sufficient as the
body for this test message.

In order to send the email, you need to have network connectivity
at that moment: in other words, your wifi needs to be up (if your
computer doesn’t have a wired Ethernet connection).

Now send the message with C-c C-c (message-send-and-exit).
This first time (and this time only) Emacs will have some questions
for you — probably only two:

1. Send mail via (default mail client):

Enter smtp here.

2. Outgoing SMTP mail server:

Type your mail provider’s SMTP hostname here.

While this is happening, Emacs is actually negotiating with your
provider’s SMTP server; if the provider asks Emacs for more infor-
mation, Emacs will pass those questions on to you (it will certainly
ask for your user name and password here).

When you enter your password, Emacs will ask if you want to save
it for later use. If you say yes, it will be saved in the file ~/.authinfo

in plain text, meaning anyone with access to this file on your com-
puter can read it to see your password. In my opinion you should set
up this file to be encrypted, and it’s easiest to do this ahead of time;
see Authentication, Encrypted Files, and EasyPG Assistant for more
information.

If there are questions that you don’t understand or don’t know the
answer to, just use C-g (keyboard-quit) to abort the sending, and
read “Mail Sending” in the Emacs manual.

Reading Mail

The next step after sending mail is to read your mail. Emacs has half
a dozen mailers to choose from, but only three are built-in, and of the
three, only Gnus directly supports remote mail. Gnus is my favorite
mailer and I highly recommend it, though it’s not for the faint of
heart.

If you are used to traditional mail readers, but have decided to switch
to reading mail with Gnus, you may find yourself experiencing some-
thing of a culture shock. — Lars Magne Ingebrigtsen, Gnus author

Properly speaking, Gnus is a newsreader. In this context, “news”
means Usenet and its protocol, NNTP. Usenet (1980) is what pre-
ceded Internet Web Forums (and AOL, and most BBS’s), and was

https://www.gnu.org/software/emacs/manual/html_node/message/Sending
https://www.gnu.org/software/emacs/manual/html_node/emacs/Quitting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Mail-Sending
https://www.gnu.org/software/emacs/manual/html_node/gnus/index.html
https://en.wikipedia.org/wiki/Usenet
https://en.wikipedia.org/wiki/Network_News_Transfer_Protocol

500 keith waclena

of tremendous cultural importance400. Imagine if instead of having 400 Usenet is still around, in a sort of
underground way, and Lars generously
built a free service that uses the NNTP
protocal to allow you to read thousands
of mailing lists without the bother of
actually subscribing to them.

to go to a different web site for every forum, they all came together
(thanks to the open protocol NNTP) as newsgroups readable in your
choice of many special newsreader programs. In addition, the news-
reader would keep of track of which postings you’ve read in each
newsgroup. No more plowing through dozens of messages you’ve al-
ready read to find the newest ones; no more reading in reverse order.
Wow.

Since you read all these newsgroups in one program, they all had
exactly the same interface (wow), and if you didn’t like that interface,
you could choose a different newsreader, or write your own.

The first Emacs newsreader that I used was Gnews by Matthew P.
“Weemba” Wiener (definitely before 1988). At some point I switched
to Masanobu Umeda’s GNUS (1988-1992), which Lars Magne Inge-
brigtsen rewrote under the slightly differently-spelled name Gnus in
1994.

Gnus was definitely the best newsreader I had ever used, inside or
outside of Emacs. And since any single post (“news message”) in a
newsgroup was almost exactly like an email, Lars made it possible to
just treat all your actual email as news. Your mail folders would be
treated as newsgroups. Sending an email would be like posting to a
newsgroup. Now you have the same interface to both news and mail,
and since Gnus is the most crazily powerful and extensible news
reader of all time, it makes an amazing mailer. It’s possible that I’ve
been using Gnus as my main mailer since about 1996 (with various
breaks to experiment with other Emacs mailers, none of which were
up to the challenge).

Gnus ships as part of Emacs and is a very large and complex sys-
tem. It has a 32,902-line manual, which is very entertaining (makes
great bedtime reading!), well-written, and covers everything you
need to know. Figuring it all out will be something of a project. . .
But fortune favors the bold!

Other Emacs Mailers

There are half a dozen other mailers to choose from; most of them
are third-party packages but three are built-in. All of these mailers,
listed here in chronological order, are completely usable if they meet
your requirements. My recommendations below are strictly personal
preference. But first, some terminology.

Remote Mail This is the normal way people read mail nowadays.
Some service provider, like Gmail or Outlook, receives and hosts
your mail for you, which you read “remotely”. That is, your MUA
(say, the Gmail app on your phone) fetches each email over the

https://en.wikipedia.org/wiki/Gmane
https://lars.ingebrigtsen.no/
https://lars.ingebrigtsen.no/

use gnu emacs the plain text computing environment 501

network each time you click to read it: you don’t actually have
copies of all your mail. The protocol that enables remote mail is
called IMAP.

Local Mail This means that your mail is delivered directly to your
computer, the messages are stored on your local disk, and your
MUA never makes a network connection (except to send). This is
the way email originally worked when people logged into servers
from terminals. It assumes your computer is always on because
mail can arrive at any moment (and if your computer is down, the
mail will bounce), and so usually only servers with system admin-
istrators do this. But there’s a hybrid approach: you can use a Mail
Retrieval Agent (MRA) to fetch your mail from a remote provider
(like Gmail) to your computer’s disk, as if it had been delivered
there directly; examples of MRAs include msmtp, movemail, isync,
mpop, fetchmail, and offlineimap.

The Mailers

Some of these mailers don’t do the IMAP protocol; using them may
require a certain amount of comfort with installing and running
external software, and setting up an ecosystem where you can read
your mail both in Emacs and also on your phone can be something of
a challenge, depending on how particular you are.

Rmail The oldest Emacs mailer (1985; it actually predates GNU
Emacs and was present in ITS TECO Emacs in 1975); built-in;
still supported and updated; only local mail is supported. Rmail is
pretty basic, but if you configure your MRA to split your mail into
reasonably-sized folders, that may be sufficient for your needs.
Even if you don’t commit to Rmail as your MUA, it makes an
excellent browser for random Mbox files you may have laying
around (like those you can download from mailing list archives).

MH-E A front-end to nmh, the modern replacement for the Rand
Mail Handler (MH), a historic (1979) command-line MUA. MH-E
is a mature program last updated in 2016. The Emacs package is
built-in, but depends on nmh being installed. Local mail only. Not
recommended.

VM A mature program last updated in 2010; neither built-in nor
available in the package manager; needs to be manually installed.
Both local and remote mail are supported. Not recommended.

Mew A very nice MUA with a lovely Mime composition facility;
probably my second-favorite Emacs mailer, though I haven’t

https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://marlam.de/msmtp/
https://mailutils.org/wiki/Fetching_Mail_with_Movemail
https://isync.sourceforge.io/
https://marlam.de/mpop/
https://www.fetchmail.info/
http://offlineimap.org/
https://mh-e.sourceforge.io/
https://www.nongnu.org/nmh/
https://en.wikipedia.org/wiki/MH_Message_Handling_System
https://en.wikipedia.org/wiki/MH_Message_Handling_System
https://www.nongnu.org/viewmail/
http://www.mew.org/en/

502 keith waclena

used it for many years. Both local and remote mail are supported.
Available in the package manager from MELPA.

Wanderlust A capable MUA; both local and remote mail are sup-
ported. But it’s not in the package manager and is typically in-
stalled outside of Emacs via the OS package manager (available
to my knowledge on Arch Linux and FreeBSD at least); depends
on three other Elisp packages that are also not available in the
package manager. I find that this means that Wanderlust easily
goes out-of-sync with Emacs updates and for this reason I don’t
recommend it.

Notmuch A very unusual, elegant, and minimalist mailer based
completely on search, with tagging completely replacing folders;
available in the package manager from MELPA. The downsides are
that Notmuch depends completely on a standalone command-line
application (called notmuch) which indexes, searches, and manages
the tags, and that it does local mail only.

Mu4e Similar in design to notmuch, but based on the mu mail index-
ing program. Local mail only. Same caveats as Notmuch. (I haven’t
ever used this mailer, but it’s well-liked.)

Browsing Mbox Files

Even if you aren’t using Rmail as your mailer, rmail-mode makes an
excellent Major Mode for viewing Mbox files, if you happen to have
any. You can make this your default with this Init File snippet:

(add-to-list 'auto-mode-alist '("\\.mbox\\'" . rmail-mode))

References

• [DeVault, Drew]. [n.d.]. Use plaintext email: Why is plaintext better
than HTML? https://useplaintext.email/#why-plaintext.

• Ingebrigtsen, Lars Magne. 2020. The Gnus Newsreader. Cam-
bridge, MA: Free Software Foundation. https://www.gnu.org/
software/emacs/manual/gnus.html. Read in Emacs with M-x

info-display-manual RET gnus RET.

• GnusTutorial in the EmacsWiki

• Kaludercic, Philip. June 2, 2020. Rmail is a Usable Emacs Mail Client.
http://ruzkuku.com/texts/rmail.html.

See also the chapter Reading Mail with Rmail in the Emacs manual.

https://github.com/wanderlust/wanderlust/
https://notmuchmail.org/
https://www.djcbsoftware.nl/code/mu/mu4e.html
https://www.djcbsoftware.nl/code/mu/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail
https://en.wikipedia.org/wiki/Mbox
https://useplaintext.email/#why-plaintext
https://www.gnu.org/software/emacs/manual/gnus.html
https://www.gnu.org/software/emacs/manual/gnus.html
https://www.emacswiki.org/emacs/GnusTutorial
http://ruzkuku.com/texts/rmail.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail

use gnu emacs the plain text computing environment 503

• Reid, Brian, Jim Larus, Stephen Gildea and Bill Wohler. 2016.
The MH-E Manual. Cambridge, MA: Free Software Foundation.
https://www.gnu.org/software/emacs/manual/mh-e.html. Read
in Emacs with M-x info-display-manual RET mh-e RET.

https://www.gnu.org/software/emacs/manual/mh-e.html

Web and News Feeds (Syndication)

News web sites and blogs update on a regular basis, adding new
headlines, stories, or posts periodically. It can be overwhelming
to have check many such sites on a daily basis; besides the sheer
amount of time required to visit them, new items you might be inter-
ested in can be deeply buried and easily missed. Somebody should
do something about this!

Somebody did! Many such sites use web syndication to publish a
feed of the new items on their site (such feeds are often loosely called
“RSS feeds”). Using a tool called a news aggregator or feed reader, you
can subscribe to these feeds and see all the updates, from possibly
hundreds of sites, in one central sorted list of headlines. Click on a
headline to see a summary (sometimes the complete content) of the
web site’s update or jump directly to it in your web browser. You can
typically sort the headlines in various ways, categorize the web sites,
and more.

To browse a personal collection of feeds, you need a feed reader.
The most popular feed readers historically have probably been web
sites that offer aggregation as a service, with all the drawbacks this
entails. Some require payment in the form of a monthly subscription;
many are ad-supported; and like any service, it may disappear at
any moment. (Google Reader was one of the most popular such feed
readers, but Google yanked the plug after half-a-dozen years, leaving
their customers in the lurch.)

You can avoid all this by running your own feed reading software,
and of course Emacs is ready with several.

Your job, with any feed reader, is to add the URLs of the feeds
you’re interested in, and the reader does the rest, groveling all your
feeds for updates whenever you start it up.

Figure 57: Web Feed Icon

Sites that syndicate their content usually indicate this with a link,
often buried at the bottom of the page, that says something like “RSS
feed” or “Atom feed”401, or perhaps just the standard web feed icon. 401 RSS and Atom are the two main

syndication data formats.Sometimes it can take some hunting to find a feed link; it might be
buried in an About or Contact page.

https://en.wikipedia.org/wiki/Web_syndication
https://en.wikipedia.org/wiki/News_aggregator
https://en.wikipedia.org/wiki/Google_Reader

506 keith waclena

Newsticker

Figure 58: Newsticker Feed Reader

The main built-in Emacs feed reader is Newsticker. Just run M-x

newsticker-show-news and it will pop up the three panel view seen
in Figure 58. By default, it comes populated with just the EmacsWiki
news feed; here I’ve added Gnus author Lars Ingebrigtsen’s blog feed
and have popped up one of his posts. Lars’s feed includes the com-
plete contents of each of his blog posts, so I actually never need to
visit his web site! But many other feeds just have a bare-bones sum-
mary402; in this case typing v (newsticker-treeview-browse-url) 402 And some lazy sites don’t even have

a summary, just a headline. . .will pull up the web page corresponding to the feed entry via Browse
URL. As usual, C-h P (describe-package), M-x customize-group,
and C-h m (describe-mode) from any of the Newsticker Buffers will
explain all.

Other Feed Readers

You can also use Gnus, the Emacs mailer, to read web feeds, and
that’s great because of the automatic deep integration with all of
Gnus’s amazing capabilities, but I have to admit there’s a fatal flaw:
Gnus has to fetch all your feeds synchronously, which means the
more feeds you add, the slower it is to update them. Somebody
needs to write an asynchronous back-end. So unless you’re both
already using Gnus for your mail (and hence completely comfort-
able with it) and only want to browse a small number of feeds (say, a
dozen), I can’t recommend it.

I switched from reading feeds in Gnus to the third-party elfeed

package from Christopher Wellons. It’s very fast; I’m using it for
over 70 feeds at the moment and it updates them in a few seconds. It
caches every feed entry you’ve ever looked at, so you can go back to
anything at any time (even if the feed entry has disappeared from the

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords
https://www.gnu.org/software/emacs/manual/html_node/emacs/Specific-Customization
https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-Help

use gnu emacs the plain text computing environment 507

original web site)403; I’ve been using it for several years and it’s only 403 The complete opposite of having
something like Google Reader yanked
out from under you.

using 54M of disk space to preserve all those years of data. There are
several third-party add-ons available, such as one for playing videos
from Youtube RSS feeds.

UNFINISHED Podcasts

UNFINISHED Slideshow Presentations

UNFINISHED Address Book: The Insidious Big Brother
Database (BBDB)

UNFINISHED Drawing Pictures

Picture Mode

Artist Mode

UNFINISHED DNS Lookups

UNFINISHED EUDC: Emacs Unified Directory Client
(LDAP)

References

Free Software Foundation. 2022. Emacs Unified Directory Client. Cam-
bridge, MA: Free Software Foundation.. Read in Emacs with M-x

info-display-manual RET eudc RET.

UNFINISHED FTP (File Transfer Protocol)

UNFINISHED Accessing SQL Databases

Editing Processes with proced

Every Unix user needs a system monitor or process viewer to monitor
running operating system processes—what process is using most of
my CPU? my memory?—and interact with them (e.g., to pause or kill
them).

Combinations of command-line programs like ps(1), kill(1),
pkill(1), and pgrep(1) can handle these tasks, but most people
prefer a dynamic tool like top(1) or the popular htop(1). The native
Emacs equivalent is M-x proced, the “process editor”.

This is not to be confused with the *Process List* Buffer gen-
erated by M-x list-processes, which is specialized for interacting
with asynchronous processes spawned by your Emacs. Some of these
are external system processes that you can also see via proced, but
list-processes knows how Emacs sub-processes are connected to
your Emacs via Process Buffers, and also includes Emacs network
connections in its purview. See Managing Asynchronous Processes.

But back to proced. When you fire it up, you’ll see a *Proced*
Buffer that will look something like the below (for clarity I’ve elided
some overlong argument lists, dozens of self-similar Firefox sub-
processes,404 and other boring processes). 404 Which are actually using the vast

majority of my memory.

User PID %CPU %MEM Start Time Args
keith 111343 1.3 7.2 Feb 1 03:40:30 /usr/lib/firefox/firefox
keith 890703 1.1 4.2 Feb 8 01:56:21 /usr/lib/firefox/firefox -contentproc
keith 1038 0.8 13.0 Jan 31 02:21:56 emacs
keith 1262 0.5 0.5 Jan 31 01:30:04 xmobar
keith 885 0.1 0.2 Jan 31 10:02 /usr/bin/mpd –systemd
keith 1043 0.0 0.1 Jan 31 05:44 herbstluftwm –locked
keith 1027 0.0 0.0 Jan 31 04:01 xautolock -locker xtrlock
keith 1454647 0.0 0.1 14:35 00:00 dunst
keith 1019 0.0 0.0 Jan 31 00:43 unclutter
keith 2138 0.0 0.0 Jan 31 00:30 /usr/bin/gpg-agent –supervised
keith 909 0.0 0.2 Jan 31 00:21 /usr/bin/pulseaudio
keith 1739 0.0 0.1 Jan 31 00:02 /usr/bin/aspell -a -m -d en_US
keith 7791 0.0 0.1 Jan 31 00:01 /usr/bin/dirmngr –supervised
keith 878 0.0 0.1 Jan 31 00:00 /usr/lib/systemd/systemd –user
keith 905 0.0 0.0 Jan 31 00:00 ssh-agent
keith 1062639 0.0 0.1 Feb 9 00:00 /bin/zsh -i
keith 239379 0.0 0.1 Feb 2 00:00 ssh ocaml
keith 1346 0.0 0.0 Jan 31 00:00 /usr/bin/alsactl monitor default
keith 447137 0.0 0.0 Feb 4 00:00 emacsclient -c

Table 66: *Proced* Buffer

By default, the Proced Buffer shows all system processes owned
by you, the user who’s running Emacs, but you can change that

https://en.wikipedia.org/wiki/System_monitor
https://htop.dev/

524 keith waclena

with a keystroke to see all processes. By default, the list is sorted
on the %CPU column; since proced uses tabulated-list-mode, you
can sort on any column. The process list is updated every 5 seconds,
and there are several predefined formats featuring more attributes
(columns), up to 31 on my Linux system.

Besides observing processes, proced’s raison d’être is signaling (or
renicing) processes; the approach will be familiar from Dired and
the like: you mark the processes you want to signal, and then do so,
choosing the signal to send with k (proced-send-signal).

I’ve grouped the *Proced* commands into four major categories:
commands that change the display, commands that change the sort,
commands to mark and unmark processes for actions, and the ac-
tions themselves.

Category Key * Action
Display f Filter processes according to SCHEME

F change buffer Format (verbosity / columns)
o * Omit this process
T toggle Tree view
g refresh process list (revert)
RET refine process list according to this process

Sort s S choose a column to sort on
s c sort by CPU percentage
s m sort by Memory percentage
s p sort by PID (process ID)
s s sort by Start time
s t sort by total run Time
s u sort by process owner (User)

Marks m, d Mark this process
M Mark all processes
C mark the Children of this process
P mark the Parent of this process
u Unmark this process, moving forward
DEL Unmark this process, moving backward
U Unmark all processes
t Toggle marks
C-/ Undo mark changes

Kill / Renice k, x * Kill (signal) this process
r * Renice this process

Quit q Quit (hide) the *Proced* buffer

Table 67: proced Commands

Commands marked with an asterisk (*) follow the Dired model to
determine which processes the action applies to:

• the next N lines if a numeric argument is given, else

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

use gnu emacs the plain text computing environment 525

• the marked processes, or finally

• the process on the current line (where Point is).

Commands That Change the Display of Processes

The list of process is normally a flat list sorted on some column
(see below) but you can also toggle a tree view with T that groups
by parent-child relationship. You can omit uninteresting processes
from the Buffer with o (proced-omit-processes), and force a refresh
of the list by reverting the Buffer with g (revert-buffer); a forced
refresh (as opposed to the automatic refresh that happens (by de-
fault) every 5 seconds) will discard any refinement or omissions. You
can toggle whether or not this automatic refresh happens with M-x

proced-toggle-auto-update.

Filtering the *Proced* Buffer

The f (proced-filter-interactive) command prompts you for a
filter scheme; see Table 68. (The default is user.) This determines how
many rows you see.

Name Meaning
user all processes owned by the Emacs user
user-running . . . which are currently running
all all system processes
all-running . . . which are currently runnning
emacs all processes descended from this Emacs

Table 68: *Proced* Buffer Filter
Schemes

Formatting the *Proced* Buffer

The F (proced-format-interactive) command prompts you for
a format scheme, one of short, medium, long, and verbose. (The de-
fault is short.) This determines how many and which columns are
present.

You can add your own format scheme or tweak any of the existing
ones with M-x customize-variable RET proced-format-alist.

Marking Processes

Marking and unmarking processes is done as per Dired, primarily
with m (proced-mark) and u (proced-unmark). Unusual marking
commands include C (proced-mark-children) to mark all the chil-
dren of the process on the current line; for example, I could easily
omit all 20 of my Firefox container processes by moving to the parent

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Reverting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

526 keith waclena

process, hitting C to mark its children, and then using o (proced-
omit-processes) to omit them from the Buffer. If instead I want to
focus only on the Firefox containers, then after C I could toggle the
marks with t (proced-toggle-marks), and then use o to omit all the
non-Firefox processes.

Killing and Renicing

Unix defines a set of 20-odd signals that can be sent to processes,
typically to terminate or pause them. Sending a signal is colloquially
known as killing, and the k (proced-send-signal) command prompts
you for the signal you want to send to the process on the current line,
or the marked processes.

Processes also have a priority, known as niceness – the nicer the
process, the lower its priority, and therefore the slower it runs and the
less it impacts the performance of your system (how nice!). Changing
the niceness of a process is known as renicing, and you can do it with
the r (proced-renice) command.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary
https://www.gnu.org/software/emacs/manual/html_node/emacs/Glossary

UNFINISHED Unix Manual Pages

UNFINISHED Calc

Interactive Tutorial

Embedded Mode

Unit Conversion

calc knows many different units: meters and inches and feet; liters
and fluid ounces; days, weeks, and years and hours, minutes, and
seconds; miles per hour; and furlongs, footlamberts, and muon rest
masses, among about 150 more (say u v when in calc-mode).

References

Gillespie, Dave. 2020. The GNU Emacs Calculator. Cambridge, MA:
Free Software Foundation. https://www.gnu.org/software/emacs/
manual/calc.html. Read in Emacs with M-x info-display-manual

RET calc RET.
There’s an Emacs Calc Reference Card.

https://www.gnu.org/software/emacs/manual/calc.html
https://www.gnu.org/software/emacs/manual/calc.html
https://www.gnu.org/software/emacs/refcards/pdf/calccard.pdf

Passwords and Password Managers

Despite the ubiquity of mobile phones and new biometric methods
of identification, people still need new passwords all the time. This
leads to two kinds of tools: password generators (because people suck
at making up good passwords), and password managers (because
people suck at remembering good passwords).

A password manager stores your many passwords and passphrases405 405 A passphrase is just a long, multi-
word, version of a password.in an encrypted form, which means that you really only need to re-

member one very strong password to unlock (decrypt) the password
manager. This allows you to use unmemorable passwords for all your
web logins—especially if your password manager will usually enter
(type in) the passwords for you.

The passphrase for your password manager needs to be strong,
and you need to be able to remember it! Believe it or not, the best
advice for how to choose a good passphrase is in this xkcd comic.
However, since it’s 12 years old now, you probably want to use more
than four words: I’d recommend five or six406. 406 Passwords can be cracked faster

every year. . . stupid computers. . .Theoretically, all you need for a password manager is one file
(probably an Org Mode file so you can use an outline structure with
tags) that you encrypt with EasyPG Assistant, though this won’t auto-
matically enter passwords into websites for you.

This Unix command implements the xkcd password algorithm;
Unix users can run this command repeatedly in M-x shell until they
get a passphrase they like:

echo $(grep -v "'" /usr/share/dict/words | shuf -n 6 | tr A-Z a-z)

It’s important to include the spaces in your passphrase (though you
can replace them with some other punctuation character if you like).

Emacs has both fancier password generators and password man-
agers, but none are built-in. I haven’t used any of these third-party
packages myself; you can read about them via C-h P (describe-
package).

https://xkcd.com/936/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Interactive-Shell
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords
https://www.gnu.org/software/emacs/manual/html_node/emacs/Package-Keywords

532 keith waclena

Password Generators

password-generator “password generator for humans”

dw Diceware passphrase generation commands

totp generate Time-based One-time Passwords (TOTP), like Google
Authenticator

The Diceware home page is an excellent source of information
about passwords and security.

Password Managers

The espy package implements the “encypted Org Mode file” pass-
word manager I described with some simple helper functions around
it. The rest of the third-party password managers are front-ends to
pass(1), “the standard Unix password manager”. I use pass(1) my-
self, though it works fine for me with Dired as my Emacs interface.

pass major mode for password-store

passmm a minor mode for pass (Password Store)

password-store password store (pass) support

password-store-otp password store (pass) OTP extension support

https://theworld.com/~reinhold/diceware.html
https://www.passwordstore.org/

EasyPG Assistant

Emacs transparently edits encrypted files via the external program
GNU Privacy Guard (GnuPG)407, and the Emacs interface to GnuPG 407 You’ll need to install GnuPG via your

operating system’s package manager.is called EasyPG Assistant, or EPA for short408.
408 The name of the program is GnuPG
but the installed command is usually
gpg(1).

Perhaps you don’t need to encrypt your files in general, but if you
need to frequently enter passwords in Emacs, perhaps for remote
file editing via Tramp, editing files via sudo(8), or authenticating
yourself to various network services (like your Emacs Email client),
then you might want to store your passwords in a file so that you
don’t have to re-type them constantly, and in my opinion such a file
needs to be encrypted409. I’ll send you to the Authentication chapter 409 Though Emacs doesn’t insist on this;

EIPNIF.for how to store your passwords, but that chapter will have to send
you back here for how to encrypt them!

GnuPG is all about public-key cryptography410. Public-key encryp- 410 One of the most important math-
ematical breakthroughs of the 20th
century, IMHO.

tion is a complex topic, and GnuPG is an extremely complex pro-
gram: I can’t cover it adequately here. See The GNU Privacy Handbook
for complete details. But if you’re already set up to use public-key,
Emacs can make using it easier.

If not, GnuPG also handles old-fashioned symmetric-key cryptogra-
phy as well, which is much easier to understand and doesn’t require
complex setup, and while public-key is much more powerful, and
easier to use once set up, symmetric-key is perfectly adequate for
encrypting files that you don’t need to share with others.

Symmetric-key cryptography simply means that you use a pass-
word to encrypt some text, and the same password is also used to
decrypt the text: probably that’s exactly what you expected when you
saw the word “cryptography”!

On Passwords

For symmetric-key encryption, you’ll need to make up one or more
passwords or passphrases. It’s okay, IMHO, to use the same passphrase
for several (or all) of your personal symmetrically-encrypted files411, 411 With public-key encryption you’re

effectively using the same passphrase
for all your files, too.

but it is definitely more secure to use a distinct passphrase for each:
however, this is a hassle and requires you to use a password man-

https://gnupg.org/
https://en.wikipedia.org/wiki/Sudo
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Symmetric-key_algorithm

534 keith waclena

ager.412 (Using public-key encryption obviates the need for a pass- 412 Which presumably you’re already
using for all your web accounts.word manager, at least for your files.) See Passwords and Password

Managers for hints on password generation.

Symmetric-Key Operations

If you haven’t set up public-key encryption, you can still use GnuPG
to encrypt files.

Creating A Symmetrically-Encrypted File

To create a brand new symmetrically encrypted file, simply visit a
file with a .gpg extension tacked onto any other extension you might
want, e.g. C-x C-f foo.org.gpg. When you save this new file, a
window will pop up listing the contents of your GnuPG public-key
ring, but the list will be empty if you haven’t configured public-key
encryption, and the entirety of the buffer will look like this:

Select recipients for encryption.

If no one is selected, symmetric encryption will be performed.

- ‘m’ to mark a key on the line

- ‘u’ to unmark a key on the line

[Cancel][OK]

Without a public-key ring, there are no recipients to select, but
that’s okay. Just click the [OK] button and Emacs will use symmet-
ric encryption for this file. You’ll be prompted for an encryption
passphrase (be sure to remember it; you won’t be able to decrypt the
file without it!).

Symmetrically-Encrypting an Existing File

If you want to encrypt a file that already exists, use M-x epa-encrypt-

file; it will prompt you for a filename and proceed as above. When
you’re done, you’ll have an additional file: a new encrypted version
of the original which has a .gpg extension. You should visit this file
to make sure you can decrypt it, and assuming you can, you should
delete the original unencrypted file with M-x delete-file or via
Dired’s D (dired-do-delete) command. It’s probably best to use
Dired so you can check for backup or auto-save files; you’ll want to
delete them too in order to avoid exposing your now-encrypted data.

Public-Key Operations

If you already have a public-key key pair set up with GnuPG, you
can use EPA to do additional operations. See The Least to Know About
Public Key Cryptography if you want to set it up.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Misc-File-Ops

use gnu emacs the plain text computing environment 535

Encrypting and Decrypting Files

Encrypting a file with public-key is mechanically the same as with
symmetric-key; the only difference is that your public-key ring will
be populated with at least your own public key, and possibly more,
so the Buffer that pops up when you initiate encryption will look
something like this413: 413 For the sake of avoiding spam

I’ve elided the 100-odd keys for non-
corporate individuals from my key
ring.

Select recipients for encryption.

If no one is selected, symmetric encryption will be performed.

- ‘m’ to mark a key on the line

- ‘u’ to unmark a key on the line

[Cancel][OK]

u 5DA89C7DECA0D55A Keith Waclena <keith at lib.uchicago.edu>

e 57D15AB98548EF3A The University of Chicago Network Security Center <security@uchicago.edu>

- 15D68804CA6CDFB2 FreeBSD Security Officer <security-officer@FreeBSD.org>

- F8B506E4A1694E46 The SANS Institute <sans@sans.org>

e 064973AC4C4A706E NetBSD Security Officer <security-officer@NetBSD.org>

- 9E98BF3210A792AD Bacula Distribution Verification Key (www.bacula.org)

If you mark one or more of the keys in the Buffer, public-key encryp-
tion will be used.

But which key? If you want to encrypt a file so that only you can
decrypt it, simply mark your own key. If you want to encrypt it so
that only one other person can decrypt, you need to have their public
key in your key ring and mark it. Thanks to public-key encryption,
there’s no need to somehow transmit the password used to decrypt
this file to the recipient: they just decrypt it with their own private
key. Not even you, the sender, can decrypt this file.

How do you get someone else’s key in your ring? You need to
import it. See Importing and Exporting Public Keys.

In addition to solving the password distribution problem, public-
key also lets you encrypt a file for several recipients at once. Just
mark the key for each recipient who should be able to decrypt the
file, including your own key if you like.

Encrypting and Decrypting Regions

An encrypted file just looks like random binary data. But you can
also encrypt just one or more portions of the file’s contents, in which
case it will look something like this:414 414 Confusingly, “PGP” was the name of

the free software that preceded GnuPG
(a.k.a GPG).

536 keith waclena

Here's the secret information!

-----BEGIN PGP MESSAGE-----

hQEOA2k9uqIsdvCNEAP/RJfBlafF4KeqNVl3LIZHgt+6E4Inve7Vz7pNmyCfXqSA

uGotx0xJxAqhdcZSrooVMZL+oP3JsEKZPeJZkoX/oGCYg4c55Y+LSmRr76tIrqmO

vDU5qhPZz4H9PvP0hve1KyfIRjTQB7/8ZJiry/4KVlf16kDiNWVsMn5rdFlyJ98D

/ROfebRZ6zOnuC3T51chrwVjsB6xKr8sKO5pJXUXQGC7vjexRB25opsdiuNlDb64

YcodunCMy1m5jYZbatA41RVV+Qh0luTkH6JxIeSugwzHApsS+Vq3VbWgoH6pi9BQ

VnFwKqc4lCFHk8XXnSuVA1x69OFCf3uZDDUhhfBcOCYX0kABsSqaGQArxX67W+cO

M5YHvHQQoNCcbFDDzPSiQjE2AG30tU46n4th55VHujgpugniX8OteSxouX703NgU

YAOk

=k5Ze

-----END PGP MESSAGE-----

Act quickly!

This format is called “armored output” because it’s safer to move it
around (e.g. via email) than binary data (which can get corrupted).
You can decrypt such data with M-x epa-decrypt-armor-in-region.
Since the encrypted data is easily recognizable, you don’t have to
set the Region precisely around it—you could just use C-x h (mark-
whole-buffer) and epa-decrypt-armor-in-region would decrypt
any and all such encrypted bits in the Buffer. The command will ask
whether to replace the armored content with the decrypted data, or
to display it in a temporary Buffer.

You can create an armored encrypted Region in a Buffer with M-x

epa-encrypt-region.
Normally, there’s no need to decrypt a unarmored Region, because

no one would insert the binary data into the middle of a file: unar-
mored data is always stored as the complete contents of a file. And
since Emacs by default decrypts encrypted files automatically when
you visit them, there’s very little call for M-x epa-decrypt-region.
But there it is, just in case.

Signing and Verifying

Besides encrypting and decrypting data, public-key cryptography
can also be used to sign data. To sign data means to attach an incor-
ruptible digital signature that verifies that you and only you sent a
given email, or signed a given contract, or packaged a piece of soft-
ware. You can sign an entire file, or just portions (Regions) of it.

Here’s what a signed Region looks like; there’s no way for me to
disavow this statement:

https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects
https://www.gnu.org/software/emacs/manual/html_node/emacs/Marking-Objects

use gnu emacs the plain text computing environment 537

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1

I hereby agree to use Emacs for the rest of my life.

-----BEGIN PGP SIGNATURE-----

iF0EARECAB0WIQS2KmSeImk7rnKCEDldqJx97KDVWgUCZHZSaAAKCRBdqJx97KDV

WtbbAKCLvZMwnQSJYX63njph890ws/TTbgCfcwtPU4EQ9ofOzh4C8Wx5HlqoUzc=

=lXKR

-----END PGP SIGNATURE-----

I created it by setting the Region around the declaration and invoking
M-x epa-sign-region. You can verify such signed text with M-x epa-

verify-region, which in this case will pop up a Buffer like this415: 415 Assuming you have my public key in
your key ring.

Good signature from 5DA89C7DECA0D55A Keith Waclena <keith at lib.uchicago.edu>

(trust ultimate) created at 2023-05-30T14:45:44-0500 using DSA

But if someone changes the text of the declaration, verification will
fail:

Bad signature from 5DA89C7DECA0D55A Keith Waclena <keith at lib.uchicago.edu>

You can sign an entire file without Visiting it with M-x epa-sign-

file.

Public-Key Ring Management

The command M-x epa-list-keys displays your GnuPG public-key
ring in a *Keys* Buffer that will look something like this:

The letters at the start of a line have these meanings.

e expired key. n never trust. m trust marginally. u trust ultimately.

f trust fully (keys you have signed, usually).

q trust status questionable. - trust status unspecified.

See GPG documentation for more explanation.

u 5DA89C7DECA0D55A Keith Waclena <keith at lib.uchicago.edu>

e 57D15AB98548EF3A The University of Chicago Network Security Center <security@uchicago.edu>

- 15D68804CA6CDFB2 FreeBSD Security Officer <security-officer@FreeBSD.org>

- F8B506E4A1694E46 The SANS Institute <sans@sans.org>

e 064973AC4C4A706E NetBSD Security Officer <security-officer@NetBSD.org>

- 9E98BF3210A792AD Bacula Distribution Verification Key (www.bacula.org)

Each line has a public-key identifier, a person’s (or corporate entity’s)
name, and usually an email address. Some lines have flags that in-
dicate the key’s trust level, and you’ll notice I have a couple expired
keys that I should update. You can hit RET on any of these keys to get
more complete information (in particular, full key fingerprints).

Table 69 lists the key management commands available in this
Buffer. In addition to the usual Special Mode commands, you can

538 keith waclena

Key Type File? Command
m Marking Mark this key
u Unmark this key
d Encrypt / Decrypt yes M-x epa-decrypt-file

e yes M-x epa-encrypt-file

i Import / Export yes M-x epa-import-keys

o export this or marked keys
s Sign / Verify yes M-x epa-sign-file

v yes M-x epa-verify-file

r Delete Remove (delete) this key

Table 69: Commands in the EPA *Keys*
Buffer

mark one or several keys and then give a command that will use
them. (If no key is marked, the key at Point will be used.) There’s a
corresponding, less-used, command to list your private-Key ring, M-x
epa-list-secret-keys.

The five “File?” commands in Table 69 can be used outside of the

Keys Buffer; they will prompt you for a file to operate on and pop
up the *Keys* Buffer if needed.

Importing and Exporting Public Keys Where do you get other peo-
ple’s public keys so that you can send them encrypted data? Many
people make their keys available on their web site; you can just
download the key as a file and then use M-x epa-import-keys.

You can also import someone’s key from a key server, if the user
has uploaded it to one. Just say M-x epa-search-keys and enter the
user’s name or email address. You can then mark the correct key and
import it.

If you want to upload your public key to a key server, you can
mark it in the *Keys* Buffer and type o (epa-export-keys).

There’s a bit of a chicken / egg problem here: how do you know
that the key on the person’s web site is really their key? If someone
else has control of their web site, they could have replaced the key
with a different one! Such concerns are very real for journalists, dis-
sidents, and whistle-blowers. Ideally you would get a copy of each
person’s public key face-to-face with an exchange of flash drives, or
from their phone via Near-field communication (NFC) or the like.
But usually it’s good enough to compare the key on their web site
with its fingerprint, as published in a separate medium, like their
email signature, business card, or via a key server. See The GNU Pri-
vacy Handbook under “Web of Trust” for more information.

https://en.wikipedia.org/wiki/Key_server_(cryptographic)
https://en.wikipedia.org/wiki/Near-field_communication

use gnu emacs the plain text computing environment 539

Caching Passwords Via the GPG-AGENT

When you run gpg(1) for the first time in a login session (or when
Emacs first runs it for you), it fires up an additional program in the
background called gpg-agent(1). This program caches your pass-
words for a period of time416 so that, if you visit an encrypted file 416 Configurable outside of Emacs in

GnuPG’s config file.several times in quick succession, you won’t have to re-enter your
password every single time.

gpg-agent’s password prompt will probably come from an OS
GUI popup window rather than from Emacs itself. If you’d rather
have Emacs prompt you in the Minibuffer, Customize epg-pinentry-

mode and set its value to loopback. You’ll also need to add this entry
to your GnuPG config file:

allow-loopback-entry

Encryption Commands in Dired

Performing GnuPG operations on whole files is often most easily
done in Dired via the commands in Table 70; as usual they observe
the Dired marks or numeric arguments.

Key Command
: d Decrypt this file
: e Encrypt this file
: s Sign this file
: v Verify this file

Table 70: Encryption Commands in
Dired

Email

In most Emacs mail user agents (MUAs), it’s very easy to encrypt,
sign, decrypt, and verify email messages and attachments. I haven’t
made a study of this in all the MUAs, but it’s certainly true in the
one I use, Gnus. Decrypting and verifying will just happen automati-
cally, and encrypting and signing are a keystroke away.

References

• Free Software Foundation. 2022. EasyPG Assistant User’s Manual.
Cambridge, MA: Free Software Foundation. https://www.gnu.
org/software/emacs/manual/epa.html. Read in Emacs with M-x

info-display-manual RET epa RET.

• Ashley, Mike. 1999. The GNU Privacy Handbook. Cambridge, MA:
Free Software Foundation. https://www.gnupg.org/documentation/

https://www.gnu.org/software/emacs/manual/epa.html
https://www.gnu.org/software/emacs/manual/epa.html
https://www.gnupg.org/documentation/guides.html
https://www.gnupg.org/documentation/guides.html

540 keith waclena

guides.html.

• Free Software Foundation. 2017. The GNU Privacy Guard Manual.
Cambridge, MA: Free Software Foundation.. Read in Emacs with
M-x info-display-manual RET gnupg RET.

The Email Self-Defense web site has a very good introduction to
GnuPG.

https://www.gnupg.org/documentation/guides.html
https://www.gnupg.org/documentation/guides.html
https://www.gnupg.org/documentation/guides.html
https://emailselfdefense.fsf.org/

UNFINISHED Emacs Speaks Statistics: Data Analysis

UNFINISHED Maps

UNFINISHED Chat

Internet Relay Chat (IRC)

Jabber

UNFINISHED Emacs as Window Manager

Games and Amusements

Emacs comes with 24 built-in games and amusements, and there
are at least 41 more in the Package Manager. If any of the games
I mention aren’t available in your Emacs, just search them in the
Package Manager. I’ve divided them into several categories.

Actual Games

By this I mean games with a computer opponent that you play
against, or classic computer games in which you try to get a better
score than the last time. The only true built-in games with a com-
puter opponent are M-x gomoku, which plays Gomoku or Five-in-a-
Row, M-x chess, and M-x gnugo which is a front-end to the GNU Go
engine (which you’ll have to install via your OS package manager).

chess has a very weak game engine implemented in Emacs Lisp
so you can play it right away, but if you install any of several strong
chess engines via your OS package manager, like gnuchess or stockfish,
M-x chess will detect it and you can play against a much stronger
opponent. The default chessboard is a simple ASCII representation,
but you can install optional graphics for a more traditional look;
see the documentation. M-x chess-ics lets you play against human
opponents elsewhere on the Internet via an Internet Chess Server.

In the computer-game category we have M-x dunnet, a text adven-
ture in the mold of the classic Advent a.k.a. Colossal Cave Adven-
ture417. Dunnet is perhaps unique among all Emacs programs of any 417 People slightly less old than I am

might say, “in the mold of Zork”.kind in that it can be run in batch mode, from a terminal outside of
Emacs!418 We also have tetris, snake, and pong—just M-x any of 418 Just invoke: emacs --batch -f

dunnet; why you would do this instead
of play it inside Emacs is beyond me.

them. You can also install Pac-Man from the Package Manager under
the name pacmacs.

Puzzles

There are a number of puzzles or solitaires. M-x blackbox plays Eric
Solomon’s famous Black Box game (as a “game” it’s really a compet-
itive solitaire). M-x solitaire plays Peg Solitaire, M-x bubbles is an

https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Gomoku
https://www.gnu.org/software/gnugo/
https://en.wikipedia.org/wiki/Internet_chess_server
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Zork
https://en.wikipedia.org/wiki/Tetris
https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://en.wikipedia.org/wiki/Pong
https://en.wikipedia.org/wiki/Pac-Man
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Black_Box_(game)
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Peg_solitaire
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements

550 keith waclena

implementation of Same Game, and M-x 5x5 is a puzzle with several
different automatic solvers which you can watch (which may put this
in the category of Display Hacks). Finally M-x mpuz is a multiplication
puzzle.

Cryptography

There are several commands related to traditional cryptography419. 419 Non-digital; for the real thing, see
EasyPG Assistant.Emacs supports ROT13, the traditional Caesar cipher of Usenet, still

occasionally used as it was then to obfuscate punch lines. M-x rot13-

region and friends will encode or decode ROT13, since it’s its own
inverse.

Two conspiracy theorists walk into a bar. Lbh pna’g gryy zr gung jnf
whfg n pbvapvqrapr. . .

Then there’s the very impressive M-x decipher-mode, which provides
assistance in decrypting monoalphabetic substitution ciphers. Insert
your ciphertext in a new Buffer and invoke M-x decipher, which will
set the Buffer up and invoke the Mode. Special commands will list
letter and digram frequencies, show adjacency lists, and the like.

Of course Emacs can handle Morse code:420 just set the Region 420 Can’t your editor?

around this message and invoke M-x unmorse-region; encode your
own messages with M-x morse-region.

.--/..../.-/-/.-/-/.... --./---/-.. .--/.-./---/..-/--./..../-

Display Hacks

There are a number of amusements that fall into the category of
display hacks (i.e. fun things to stare at). M-x hanoi implements the
Towers of Hanoi puzzle, well-known to programmers for its simple
recursive solution.

Infinitely more interesting is M-x life, an implementation of Con-
way’s famous cellular automaton. One of 17 starting patterns is ran-
domly chosen. It’s not hard to add your own, but check out the Life
Lexicon for everything you could possibly want to know about pat-
terns, and additional Elisp code.

Emacs also has its own screensaver. Just say M-x zone and your
Emacs will zone-out randomly. It’s hard to describe, but either some-
thing disturbing but very subtle will happen, or something very dis-
turbing and extremely in-your-face will. Regardless of how messed
up your precious text looks, I assure you that nothing is really hap-
pening. Give any Emacs command at all, and the zoning will stop
and all apparent destruction will vanish. Definitely one of the best
things in Emacs.

https://en.wikipedia.org/wiki/SameGame
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/ROT13
https://en.wikipedia.org/wiki/Caesar_cipher
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Morse_code
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://foldoc.org/display+hacks
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Tower_of_Hanoi
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://conwaylife.com/ref/lexicon/lex_home.htm
https://conwaylife.com/ref/lexicon/lex_home.htm
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements

use gnu emacs the plain text computing environment 551

Jokes / Wackiness

Finally we have a motley assortment of oddities. I mentioned at the
very beginning that Emacs comes with a Rogerian therapist; you
might need one after watching M-x zone. Just invoke M-x doctor if
you feel the need to talk things out; it’s an Elisp implementation
of Weizenbaum’s famous ELIZA program from the MIT AI Lab in
1966: more of an early Natural Language Processing project than a
psychology one, ELIZA was the first chatbot.

Unix systems have had a fortune cookie program since 1979, which
prints a random quip, quotation, or joke every time it’s run. M-x
fortune does the same thing for Emacs421. 421 It’s not a front-end to fortune(6)

but rather accesses the fortune data files
directly.

In honor of several XKCD comics on the topic of Emacs, we have
the otherwise inexplicable M-x butterfly (you’ll have to bind it to
C-x M-c M-butterfly yourself).

References

Poundstone, William. 1985. The Recursive Universe: Cosmic Complexity
and the Limits of Scientific Knowledge. Chicago: Contemporary Books..

https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements
https://en.wikipedia.org/wiki/ELIZA
https://en.wikipedia.org/wiki/Fortune_(Unix)
https://xkcd.com/378/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements

Part IV

EMACS FOR. . .

UNFINISHED Emacs for Writers

Writing should be all about the words. But word processors like Mi-
crosoft Word, Google Docs, or Apple’s Pages force you to think about
formatting as you compose. — Ashton Wiersdorf

Emacs is heavily used for authoring printed documents (memos,
journal articles, books like this one), and online documents like PDFs
and HTML pages (and entire web sites). You’ll remember that “the
one thing Emacs isn’t” is a WYSIWYG word processor like Microsoft
Word or Google Docs: instead, Emacs authors use a markup language
of some kind that’s “typeset” by an external program: the most pop-
ular must surely be LATEX, and nowadays the flexible Org Mode must
be a close second. See Typesetting and Publishing below for these.

The rest of this chapter describes facilities and subsystems that can
assist across many different authoring modes.

UNFINISHED Text Mode

Outline Mode

Emacs has had the Major Mode outline-mode since the very begin-
ning. It uses a very simple markup to structure text into an outline,
and provides three main features:

• folding text i.e. hiding and revealing branches of the outline to
make it easier to see the document structure, and to focus on one
part at a time

• colorful syntax highlighting that makes it easier to spot the head-
lines (headings)

• commands to navigate by headlines, and to easily move headlines—
and everything underneath them recursively—around: promote
and demote them, and rearrange siblings amongst themselves.

However, outline-mode has for some time been eclipsed by its
compatible but much more powerful sibling, Org Mode. While Org is
enormous and daunting in its power, at the level of simple outlining,

https://www.latex-project.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Outline-Mode

556 keith waclena

it’s actually easier to learn and use than outline-mode; I can’t see any
reason for anyone not to skip directly to Org Mode. In other words,
move along: nothing to see here.

UNFINISHED Filling

Breakable and Non-breakable Space

UNFINISHED Word Wrap

UNFINISHED Electric Quotes

• electric-quote-mode

UNFINISHED Spell Check

UNFINISHED Dictionaries and Thesauri

UNFINISHED Footnote Minor Mode

UNFINISHED Managing Bibliographic Citations

UNFINISHED Typing Tutors

UNFINISHED Presentation Slide Shows

UNFINISHED Generating Web Pages and Web Sites

UNFINISHED Typesetting and Publishing

TEX and LATEX

Texinfo

Fountain Mode for Screenplays

Groff

Org

Muse

use gnu emacs the plain text computing environment 557

Figure 59: Editing a Document with
AUCTeX

UNFINISHED Emacs for Programmers

UNFINISHED Emacs: Text Editor or IDE? Yes.

UNFINISHED Commenting and Uncommenting

UNFINISHED Change Logs

“Change Log” in the Emacs manual.

UNFINISHED Compiling Code

UNFINISHED Managing Projects

UNFINISHED On-the-Fly Syntax Checking

UNFINISHED Tags and The Xref Subsystem

UNFINISHED Debugger Support

UNFINISHED Emacs Lisp Programming

UNFINISHED The Elisp Debuggers

https://www.gnu.org/software/emacs/manual/html_node/emacs/Change-Log

UNFINISHED Emacs for Web Developers

Part V

THE BACK OF THE BOOK

Appendices

Varieties of Emacs: A History

Figure 60: David A. Moon

“Emacs”422 is actually the name of a family of text editors that are ei-

422 “Editing MACroS”

ther descended from or inspired by one another. The original Emacs
was written at the MIT AI Lab in 1976 by famous Lisp hackers Dave
Moon and Guy L. Steele Jr. It was implemented in the famously
cryptic423 command language of the command-line text editor TECO

423 But Turing-complete.

to provide it (TECO, that is) with a collection of useful macros and
an enhanced visual mode. This Emacs ran on a DEC PDP-6 under
the Incompatible Timesharing System (ITS), and would be completely
recognizable to a modern Emacs user.

Figure 61: Guy L. Steele (gls)

For an editor to deserve the name “emacs” the main requirement
is that it be fully extensible with a real programming language. For
GNU Emacs, this language is Lisp. Other Emacsen have used TECO,
Scheme, a dialect of Trac called Mint, interpreted C-like languages,
etc.

TECO, and thus the original Emacs, was implemented in PDP-6
assembly language, and so wasn’t readily portable to other computer
architectures (except perhaps the related PDP-10). But seemingly
everyone who’d ever used Emacs insisted on having it, so many com-
pletely new reimplementations were created. The first new version,
by Dan Weinreb, was also the first Emacs implemented in Lisp, for
the MIT Lisp Machine. This was EINE, which stood for “EINE Is Not
Emacs” (which was probably the second recursive acronym).

In 1978, Bernie Greenberg implemented Multics Emacs for the
Honeywell 6180 running the Multics operating system; this Emacs
was implemented in Maclisp. At the same time a new version for the
Lisp Machine was released, the wonderfully-named ZWEI (“ZWEI
Was EINE, Initially”). From this point on, there was a specially-built
Emacs or Emacs-alike of some sort for many other machines and
operating systems (e.g., SunOS, VMS, MS-DOS, CP/M, etc).

The software portability enabled by the Unix operating system and
the C programming language, and the gradual dominance of Unix,
finally somewhat tamped down the fecund growth of this Emacs

https://en.wikipedia.org/wiki/David_A._Moon
https://en.wikipedia.org/wiki/David_A._Moon
https://en.wikipedia.org/wiki/Guy_L._Steele_Jr.
https://en.wikipedia.org/wiki/TECO_(text_editor)
https://en.wikipedia.org/wiki/PDP-6
https://en.wikipedia.org/wiki/Incompatible_Timesharing_System
https://en.wikipedia.org/wiki/TRAC_(programming_language)
https://en.wikipedia.org/wiki/Multics

566 keith waclena

ecosystem.
The first Emacs for Unix was Gosling Emacs (a.k.a. Gosmacs),

implemented by James Gosling in 1981. It was written in portable C,
but its extension language, Mocklisp, was only superficially similar to
Lisp and couldn’t be considered a serious programming language.

Gosmacs was initially freely redistributable, but went commercial
in 1983 as Unipress Emacs.

Figure 62: Richard M. Stallman (rms)

GNU Emacs, released in 1985, was written (also in C) by Richard
Stallman, arch hacker and Chief GNUisance, an early contributor
to and maintainer of the original TECO Emacs. He started with the
freely-redistributable code of Gosmacs, but replaced Mocklisp with
a true Lisp interpreter (implemented in C), changing virtually all the
Gosmacs code in doing so. Unipress complained about the remain-
der of the original Gosmacs code in the freely-redistributable GNU
Emacs, and within a few months, Stallman had replaced it all with
his own original code.

As microcomputers encroached on the province of time-shared
mainframes and minicomputers in the 1980s, microcomputer Emac-
sen began to appear. Due to memory limitations, most of these were
not the real thing and had sub-standard, if any, extension languages.
Still, they were way better than edlin. Notable examples, among
many others, include MINCE (1981), which ran on 8-bit Z80’s run-
ning CP/M; JOVE (1983), MicroEmacs (1985), mg (1986), and prob-
ably the closest of them all to a true Emacs, Russ Nelson’s Freemacs
(1986), a 21K MS-DOS executable with a real extension language,
MINT (“MINT Is Not TRAC”). Freemacs was written in a combi-
nation of 304,470 bytes of 8086 assembly language and a whopping
294,976 bytes of MINT.

These early Emacsen were all non-graphical text-mode appli-
cations. In 1989, work was begun at the University of Illinois on a
graphical-mode fork of GNU Emacs for the X Window System, called
Epoch. Lucid, Inc. needed more than Epoch provided and started
their own fork, originally called Lucid Emacs but better known as
XEmacs. The graphical features were intended to be merged into
GNU Emacs, but there was disagreement on the implementation is-
sues, and the XEmacs fork became more of a schism: XEmacs was
permanently divorced from GNU Emacs; the two projects coexisted
(and shared code) for close to twenty years. XEmacs development
ceased in 2009.

Nowadays, most other Emacsen are variants or forks of GNU
Emacs, like the GNU version for Microsoft Windows, or Aquamacs,
a version for Mac OS that uses the native Cocoa API. Today, GNU
Emacs effectively is Emacs.

https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Edlin
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/CP/M
https://en.wikipedia.org/wiki/Freemacs
https://en.wikipedia.org/wiki/TRAC_(programming_language)
https://en.wikipedia.org/wiki/Fork_(software_development)
https://en.wikipedia.org/wiki/X_Window_System
https://en.wikipedia.org/wiki/XEmacs
https://en.wikipedia.org/wiki/Aquamacs

use gnu emacs the plain text computing environment 567

Historical Firsts & Innovations

GNU Emacs may well be the longest-lived (38 years old) free soft-
ware computer program (excluding operating systems) still in active
development. It’s an important part of the history of computing, not
least because of the many innovations that debuted in Emacs, many
of which have gone on to be standard features that are now expected
to be present in any editor or IDE.

There’s a hobby called retrocomputing where enthusiasts resurrect,
preserve, and use ancient computer hardware and software. As of
this writing, Gen Z’ers in droves are supposedly trading in their
smart phones for old-school flip phones.424 424 Albeit probably less as a hobby and

more because of the stress induced by
social media.

Emacs is possibly unique in providing the fun of retrocomputing
in a completely modern, up-to-date, actively evolving, and com-
pletely usable system.

Here’s a partial timeline of Emacs firsts. It can be hard to pin
down the facts on some of these; any mistakes are entirely my own.

1976 ITS Emacs created.

1976 real-time display (full-screen) editor “In the early to mid-1970s,
[Richard] Stallman would make some key enhancements to TECO
that allowed it to become a fully interactive, WYSIWYG-style
onscreen editor.” — Dan Murphy, The Beginnings of TECO

1976 docstrings The concept of actually attaching the documentation
of a function to the function itself was invented in ITS Emacs and
enabled the online help system.

1976 hypertext Emacs’s Info was one of the first freely available hy-
pertext systems, predating the World Wide Web by about fourteen
years.

1978 incremental search Invented in ITS Emacs.

1978 file manager Dired was one of the earliest file managers, and
probably the first to be built-in to an editor.

1985 GNU Emacs released.

1985 completion GNU Emacs was probably the first editor with com-
pletion, and possibly the first non-shell (completion was invented
in the TENEX “shell” in 1969, and then adopted in tcsh(1) in
1981).

1985 undo The first editor with unlimited undo and redo.

1989 transparent remote file editing Via the ange-ftp package, now
subsumed by Tramp.

https://en.wikipedia.org/wiki/Retrocomputing
https://en.wikipedia.org/wiki/Retrocomputing
https://en.wikipedia.org/wiki/Docstring
https://en.wikipedia.org/wiki/File_manager
https://en.wikipedia.org/wiki/TENEX_(operating_system)
https://en.wikipedia.org/wiki/Tcsh

568 keith waclena

1992 file local variables Stems from Elisp’s unusual variety of scopes.

1992 Incremental Narrowing Framework I believe Icomplete was the
first INF.

Emacs vs. The Unix Philosophy

Emacs has often been criticized by Unix purists as being diametri-
cally opposed to the Unix Philosophy. Unix is supposed to consist of
many small, simple commands that each do one thing well, whose
power comes from their composabilty via shell pipelines, while
Emacs is the ultimate monolithic application: one enormous program
that tries to do everything itself.

This is seen as a violation of a key precept of the Philosophy:

Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding new “features”. —
Doug McIlroy, “UNIX Time-Sharing System”

I would like to suggest that Emacs is actually a better manifestation
of the Unix Philosophy. The ideal Unix system consists of many
small programs written mainly in C, run by the Unix kernel; Emacs
consists of many functions written mainly in Elisp, any of which will
be even smaller than the smallest Unix programs, run by the Lisp
kernel.

Ideal Unix programs are composable via pipes: the output of
one program can be the input to another. Emacs Lisp functions are
inherently composable.

Unix programmers are exhorted to “write programs to handle text
streams, because that is a universal interface.” Flat text streams are
just a stream of bytes with at best a minimal two-dimensional struc-
ture of lines of characters; any additional structure has to be imposed
on that. But there’s no standard for any extra structure, and so every
program comes up with something different (colon-separated fields?
CSV? XML? JSON?). Even in 1978 McIlroy felt the need to warn the
programmer not to “clutter output with extraneous information” and
“avoid stringently columnar or binary input formats” in an attempt
to mitigate the problem.

Calling an Emacs function is of course much lighter-weight than
forking and exec’ing even the smallest compiled C program, and all
the programs in a pipeline need to parse and re-parse each other’s
flat text data over and over. In contrast, Elisp functions all support
the same recursive tree-structured data format (S-expressions), which
doesn’t need to be parsed in between the “pipelines” of functions.

Emacs consistently excels at meeting other precepts of the Philoso-
phy:

https://www.gnu.org/software/emacs/manual/html_node/emacs/File-Variables
https://www.gnu.org/software/emacs/manual/html_node/emacs/Icomplete
https://en.wikipedia.org/wiki/Unix_philosophy

use gnu emacs the plain text computing environment 569

• “Don’t insist on interactive input” (McIlroy). Elisp interactive com-
mands can always be composed with non-interactive functions.

• “Design and build software, even operating systems, to be tried
early, ideally within weeks. Don’t hesitate to throw away the
clumsy parts and rebuild them” (McIlroy). The Emacs user is
continually modifying their system as they work.

• “Use tools in preference to unskilled help to lighten a program-
ming task, even if you have to detour to build the tools” (McIlroy).
Nothing could be more of an Emacs cliché than devoting time to
building and enhancing tools!

• “Self-supporting system: all Unix software is maintained under
Unix” (Thompson & Ritchie). Emacs is developed and maintained
inside of Emacs, including documentation, debuggers, and pack-
aging.

• “Make it easy to write, test, and run programs” (Thompson &
Ritchie). Any Elisp function that throws an error can pop you
directly into the ever-present built-in debugger; the profiler and
compiler are at your fingertips; the entire state of Emacs at the
moment of the error is introspectable; and you can fix the bug and
continue your work without so much as restarting.

• “Write abstract programs that generate code instead of writing
code by hand” (Raymond). Lisp programming at its most ad-
vanced is all about writing Lisp code to generate Lisp code (via
macros); see Graham and Hoyte.

• “Write flexible and open programs” (Raymond). Elisp programs
are customizable via the Customize Facility, and their behavior
can be changed by Buffer Local Variables, dynamic binding, and
function advice (see “Advising Functions” in the Elisp manual).

A key innovation of Unix was the interactive shell that allowed
users to glue programs together interactively, and to easily make new
programs out of shell scripts. Emacs is a shell for Elisp functions,
without the disadvantages of shell scripts—the difficulties of quoting
and the dangers of rescanning commands, weak error handling, poor
data structures, poor portability, and inefficient execution due to a
lack of compilation.

References

• Graham, Paul. 1994. On Lisp: Advanced Techniques for Common Lisp.
Englewood Cliffs, NJ: Prentice Hall. http://www.paulgraham.com/
onlisptext.html.

https://www.gnu.org/software/emacs/manual/html_node/elisp/Advising-Functions
http://www.paulgraham.com/onlisptext.html
http://www.paulgraham.com/onlisptext.html

570 keith waclena

• Hoyte, Doug. 2008. Let Over Lambda: 50 Years of Lisp. https://
letoverlambda.com/.

• McIlroy, M.D., E.N. Pinson and B.A. Tague. July-August 1978.
“UNIX Time-Sharing System: Forward.” Bell System Technical
Journal 57, no. 6: 1899-1904. https://archive.org/details/
bstj57-6-1899/page/n1/mode/2up.

• Raymond, Eric S,. 2004. The Art of Unix Programming. Boston:
Addison-Wesley..

UNFINISHED Compilation Mode and its Many Descendants

The Great Sentence-Ending Controversy

“Typing two spaces after a period is totally, completely, utterly, and
inarguably wrong,” Farhad Manjoo wrote in Slate in 2011. “You can
have my double space when you pry it from my cold, dead hands,”
Megan McArdle wrote in the Atlantic the same year. — Avi Selk

The Emacs default of ending sentences with two spaces comes from
the era of typewriters: in the monospace font of the typewriter, two
spaces made sentence endings easier to see and improved readability.
In the early days of computing, anything you looked at on a terminal
screen or printed from a computer would come out in a monospace
font, too.

Nowadays, most of the computer-generated text that we read is
digitally typeset and formatted with proportional fonts for a web
browser or a PDF viewer. When you generate text like this from
Emacs (say, via Org Mode), it doesn’t matter at all how many spaces
you put after your periods, or even between words: the typesetting
process will arrange for an appropriate amount of spacing. So spaces
after sentences only affect motion and paragraph filling (also not
usually a concern when you’re typesetting).

If you’re in the habit of using two spaces, like Megan and I, the
Emacs sentence commands are ready for you. If you’re a one-spacer
like Farhad, you can set sentence-end-double-space to nil in your
Init File:

(setq sentence-end-double-space nil)

but note that the sentence commands will then have to assume abbre-
viations (e.g. “e.g.”) end your sentences, making the commands less
useful. Which is why I use two spaces.

If you’re a two-spacer, you will find yourself facing a lot of one-
spaced sentences as you edit other people’s files, emails, and the like.
In this situation, M-x repunctuate-sentences is a lifesaver: it will
convert these sentences to the more useful two-space format.

https://letoverlambda.com/
https://letoverlambda.com/
https://archive.org/details/bstj57-6-1899/page/n1/mode/2up
https://archive.org/details/bstj57-6-1899/page/n1/mode/2up
http://www.slate.com/articles/technology/technology/2011/01/space_invaders.html
https://www.theatlantic.com/entertainment/archive/2011/01/you-can-have-my-double-space-when-you-pry-it-from-my-cold-dead-hands/69592/

use gnu emacs the plain text computing environment 571

Install Emacs on ChromeOS

Chrome OS now runs Linux in a VM, and the Emacs you install there
is the real thing (though not the latest version). Once you’ve installed
and fired it up, Emacs can be run from the launch bar like any other
ChromeOS app.

Installing Emacs on a (post-2018) Chromebook is easy but there
are a few steps.

Go to Settings and in the Device tab, click on “Linux (Beta)”, then
“Turn on”.

Click “Install” in the pop-up dialog (the defaults are probably
fine).

If after installation completes, a Linux terminal window does not
appear, click on the new Unix Prompt (“>_”) icon in the launch bar
(or, if that’s missing, fire up the Terminal app from the launcher) and
wait for the VM to start up.

At the shell prompt in the VM window, run:

sudo apt update

sudo apt uprade

sudo apt install emacs25

Now run Emacs from the shell prompt:

emacs

With Emacs running, you should see a new icon for it in the
launch bar (a script “E”); Alt-click on the icon and select “pin” from
the menu. Just to make sure everything’s working, exit Emacs (click
the “X” in the window’s title bar (or use C-x C-c (save-buffers-
kill-terminal)). You can minimize the Linux shell window.

Click the icon to start up a new Emacs. You can start Emacs like
this in the future; it will start up the Linux VM if necessary (which
makes the first start-up after a reboot pretty slow).

If you have Linux skills, you can fiddle with the package manager
to get a more up-to-date version of Emacs.

The biggest problem is not with the Emacs per se; it’s that the
VM’s file system and the Chrome OS file system are mostly separate.
If Chrome is your only machine, no problem (you can backup your
data manually via Settings / Linux (Beta)).

But if your Chromebook is just one of several machines, and you
want to clone your config from another OS, you’ll have to jump
through some hoops, either loading it from a web URL, or via Tramp
from a host on the network, or synchronize it via rsync(1), unison(1),
or the like. Syncing at the file system level is also possible with
syncthing(1), sshfs(1), or any of many other tools. The same thing
goes for your data.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting
https://www.gnu.org/software/emacs/manual/html_node/emacs/Exiting

572 keith waclena

The Famous Canards

Many people will argue that you shouldn’t use Emacs.
One of the oldest arguments is that Emacs is too big; an old saw

goes:

EMACS: Eight Megabytes And Constantly Swapping425 425 There are many more: “Eventually
Munches All Computer Storage”,
“Emacs Makes A Computer Slow”,
“Escape-Meta-Alt-Control-Shift”, etc,
but also “Emacs Makes All Computing
Simple”.

but this dates from days of old when 8M was a lot of memory. Nowa-
days, that’s about the size of one pop song in digital form. A modern
Emacs takes 26M (52M graphical) of memory; that’s a mere 3% of
the space my web browser is using at this moment, and in Client /
Server usage, this is the only instance of Emacs that will be running
on your 8G laptop.

Another argument is that Emacs takes too long to start up. On my
10-year-old laptop, it starts up in 0.1 seconds (0.5 graphical), which
I think is plenty fast enough. If you heavily customize your Emacs
and don’t take care to make your customizations lazy, you can indeed
achieve much slower startup times (perhaps on the order of several
seconds — with my 1,120-line Init File it takes 2.4 seconds to start).
Since I run the Emacs server, I only pay this cost once, just after I’ve
rebooted; then I can connect to the server, from various terminals and
shells, with the Emacs client in less than 0.01 seconds. See Client /
Server.

The Troublesome Meta Key

The Meta key is a modifier key which works exactly like a Control key
or a Shift key in that it generates no character by itself, but rather
modifies another key struck while it’s being held down.

What key is the Meta key? On “standard” keyboards, it will be
either the Alt key or the Windows key. On Apple keyboards, it will
be either the Option key or the Command key. You’ll just have to try
them and see!

Fire up Emacs with emacs --no-splash. Type a word, and then
type Alt-b using the Alt key. If your cursor moves backwards to the
beginning of the word you just typed, Alt is your Meta! If not, try
Windows-b using the Windows key; this should work, and indicates
that Windows is your Meta. Likewise for Command and Option on a
Mac keyboard.

Other programs can steal the Meta key; for example, your X win-
dow manager might be using it for its own purposes, in which case
Emacs may never see you type it. When this happens, you either
have to change Emacs’s notion of the meta key, or change the win-
dow manager’s notion of its key.

https://en.wikipedia.org/wiki/Windows_key

use gnu emacs the plain text computing environment 573

You can also change which key Emacs uses as Meta for any reason
(either necessity or if another key just feels better to you). Whichever
key turns out to be your Meta, the other key is known as the Super
key. If your Meta is Alt (Command), your Super is probably the
Windows key (Option key). On Unix systems running X11, the Super
key is usually used to control your window manager, leaving Meta
for Emacs (unless you choose to swap them).

For more help solving Meta key problems, see the Emacs Wiki.426 426 https://www.emacswiki.org/emacs/

MetaKeyProblems

The ESC Prefix

There’s one other prefix command that’s both very important and
completely redundant: the ESC prefix. This is the key labeled “esc”
on your keyboard; that key lets you type the ASCII Escape (which
is a control character: actually it’s exactly the same character sent by
C-[, so you can type that if you prefer).

As described above, not all keyboards provide a suitable Meta
key, or it may be reserved or stolen by your desktop or the operating
system. If this applies to you, all is not lost. You just use the ESC key
instead. M-a becomes ESC a; C-M-f becomes ESC C-f (remember the
equivalence of C-M-f and M-C-f and this will make sense).427 427 You really don’t want to use Emacs

without a Meta key, so see The Trouble-
some Meta Key for how to fix this.

There’s only one trick: ESC is actually an ASCII character, not a
shift-like modifier key. If you type Alt, say, without then typing an-
other key simultaneously, nothing happens: Emacs doesn’t see that
you hit Alt. No key code is sent to Emacs at all. But when you hit
ESC, you’ve immediately sent the ASCII Escape character to Emacs.
It’s just like hitting Z or *. This means that you don’t try to hold
down ESC at the same time as the other key: use it as a prefix charac-
ter and type it separately and distinctly.

A true Meta is a wonderful thing for Emacs (it makes typing much
faster), but I used ESC for years. (When Emacs was born in 1976,
hardly any keyboard had any modifier key besides Control and Shift,
and everybody used ESC.)

The Least to Know About Public Key Cryptography

Symmetric Encryption

Most encryption techniques use a password or passphrase428 to en- 428 Which is just a longer, and hence
stronger, password.crypt a file that contains a secret. The same password both encrypts

and decrypts the file: hence the term symmetric encryption.
You have to remember this password if you want to decrypt the

file. As long as you’re the only person who has to decrypt the file,
this isn’t too much of a problem, but what if you need to share the

https://www.emacswiki.org/emacs/MetaKeyProblems
https://www.emacswiki.org/emacs/MetaKeyProblems
https://www.emacswiki.org/emacs/MetaKeyProblems

574 keith waclena

file with someone else? Since it’s encrypted, you can securely send
them the file, say via email, but they can’t decrypt it unless you
give them the password. But how do you securely send them the
password? If you encrypt the password, you have just dug your-
self a deeper hole. The only real solution is to arrange a face-to-face
meeting, and if you can do that, you might as well just give them
the unencrypted secret file while you’re at it! This is called the key-
management problem.

Public-Key Encryption

The real solution to the problem is asymmetric cryptography: you use
one password to encrypt the file, and a second, different password to
decrypt it.

Everyone has a pair of related passwords, or keys. One is your
private key that you zealously keep secret. The other is your public key
which you share with the entire world: publish it on your web page
or social media profile; print it on your business cards; include it in
the signature of every email you send; and upload it to a network of
key-servers which anyone can query.

Now when you want to send a secret file to someone, you encrypt
the file with their public key (which you find on their website). Be-
cause of the mathematical relationship between each person’s public
and private key, only the private key can decrypt a secret encrypted
with the corresponding public key! So anybody can encrypt a mes-
sage to person A with A’a public key, but only A can decrypt those
messages, with A’s own private key. The key management problem is
solved!

How do you encrypt a file that only you yourself should see?
Simple: just encrypt it with your own public key, and only your own
private key (which only you know) can decrypt it.

What if you were to “encrypt” a file with your private key? Then
only your public key can decrypt it—but that means anybody can
decrypt it, since your public key is, well, public!

Far from being a disaster, this is actually a bonus: while everyone
can decrypt this file, only you could have encrypted it with your
private key, so this is a digital signature: a secure way of signing a
document, like a contract. Once you’ve signed it, you can’t later deny
that you’d done so.

With GnuPG you can both securely encrypt files, and securely sign
them, or both.

use gnu emacs the plain text computing environment 575

Setting Up Public Key Encryption

Once you’ve installed GnuPG, you can create your public/private key
pair by running this command in the shell:

gpg --quick-generate-key EMAIL

where EMAIL is your email address, in the form test@example.com.
The private-key part of your key pair is just a huge random num-

ber429, and that number is stored in a file. You’ll be asked for a 429 Albeit one with particular properties.

passphrase, which is used to encrypt your private key:430; see On 430 Symmetrically!

Passwords for recommendations.
In order for GnuPG to compute enough random data to generate

your key pair, you should wiggle your mouse, or type any text you
like in some other window, or start playing a video431. When the 431 I am not pranking you.

command finishes, you’ll see something like:

public and secret key created and signed.

pub rsa3072 2023-05-28 [SC] [expires: 2025-05-27]

5A6256007A1E27CBF51B27D451B2DCA5731D91DE

uid test@example.com

sub rsa3072 2023-05-28 [E]

The big hexadecimal number, here 5A6256007A1E27CBF51B27D451B2DCA5731D91DE,
is your fingerprint. You can think of it as the id of your public key432, 432 It’s a cryptographically secure hash.

and you can share it with anyone. Your actual public key is a really
huge number that will be well over 1,000 hex digits in length. I put
my fingerprint in my email signature and on my business cards, and
my entire huge public key on my web site.

There are many more concepts you’ll need to understand in order
to use public-key cryptography effectively. See The GNU Privacy
Handbook for the best explanation.

UNFINISHED Emacs on Your Phone

An Initial Init File

Throughout this book I’ve given a number of recommended snippets
for a minimal Init File designed for a beginning Emacs user following
along with the text. All these snippets are gathered together in this
appendix. You can download them as a usable Init File here:

https://www2.lib.uchicago.edu/keith/emacs/init.el

Remember that this Init File is designed in accordance with my
notion that you should learn Emacs with as few changes from the
defaults as possible. This is definitely not the Init File that I use (mine

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://www2.lib.uchicago.edu/keith/emacs/init.el

576 keith waclena

is 19 times as large)! If you start with this one, you’ll slowly change
it to suit your needs and preferences and, eventually, will no longer
recognize it!

Ask Emacs where to install this file with C-h v user-emacs-directory;
this will give you the path to a correct directory; make sure that di-
rectory exists, and install the Init File in it, named “init.el”. On
Unix systems, you can use ~/.emacs.d/init.el, but under other
OS’s you should check. See “Init File” in the Emacs manual if there’s
any confusion.

If you already have your own Init File, you don’t have to replace
it. Instead, download the Init File to your user-emacs-directory,
renaming the file to, say, use-gnu-emacs.el, and now you can simply
add this line to your existing Init File to include my recommenda-
tions:

(with-demoted-errors "%S" (load-file (concat user-emacs-directory "use-gnu-emacs.el")))

If you add this line at the beginning of your existing Init File, the rest
of your Init File will trump any conflicting settings; vice-versa if you
add this line at the end.

The Init File

;; Recommended minimal starting Emacs Init File

;; extracted from the book:

;; /Use GNU Emacs: The Plain Text Computing Environment/

;; by Keith Waclena

;; https://www.lib.uchicago.edu/keith/emacs/

;;

(require 'package)

(when (< emacs-major-version 24)

;; For important compatibility libraries like cl-lib

(add-to-list 'package-archives '("gnu" . "https://elpa.gnu.org/packages/")))

(when (version< emacs-version "26.3")

;; older emacsen < 26.3 may need this

(setq gnutls-algorithm-priority "NORMAL:-VERS-TLS1.3"))

(with-eval-after-load 'package

(dolist (arc '(("nongnu" . "https://elpa.nongnu.org/nongnu/")

("melpa-stable" . "https://stable.melpa.org/packages/")

("melpa" . "https://melpa.org/packages/")))

(add-to-list 'package-archives arc t))

(setq package-archive-priorities

'(("gnu" . 10) ("nongnu" . 9) ("melpa-stable" . 8) ("melpa" . 7))))

https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File

use gnu emacs the plain text computing environment 577

;; thanks to an anonymous EmacsWiki coder

(defun undo-yank (arg)

"Undo the yank you just did. Really, adjust just-yanked text

like \\[yank-pop] does, but in the opposite direction."

(interactive "p")

(yank-pop (- arg)))

(global-set-key (kbd "C-M-Y") 'undo-yank)

(setq enable-recursive-minibuffers t)

(with-eval-after-load 'chistory

(setq list-command-history-max 120)

(define-key command-history-map (kbd "<return>") 'command-history-repeat))

(setq completion-styles '(partial-completion substring flex))

(unless (package-installed-p 'vertico)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'vertico)))

(with-demoted-errors "%s" (vertico-mode +1))

(unless (package-installed-p 'marginalia)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'marginalia)))

(with-demoted-errors "%s" (marginalia-mode +1))

(unless (package-installed-p 'windmove)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'windmove)))

;; <S-{left,right,up,down}> switches windows

(with-demoted-errors "%s" (windmove-default-keybindings))

(winner-mode 1) ; undo window config changes

;; add more felicitous bindings

(define-key winner-mode-map [(control c) (control left)] 'winner-undo)

(define-key winner-mode-map [(control c) (control right)] 'winner-redo)

(global-set-key (kbd "C-{") 'shrink-window-horizontally)

578 keith waclena

(global-set-key (kbd "C-}") 'enlarge-window-horizontally)

(global-set-key (kbd "C-^") 'enlarge-window)

(global-set-key (kbd "C-<") 'scroll-left)

(global-set-key (kbd "C->") 'scroll-right)

(setq large-file-warning-threshold (* 100 1024 1024)) ; 100MB

(when (version<= "27.1" emacs-version) ; only available recently...

(global-so-long-mode +1)) ; speed up long lines

(setq view-read-only t)

(add-hook 'doc-view-mode-hook 'auto-revert-mode)

(add-hook 'pdf-view-mode-hook 'auto-revert-mode)

(add-hook 'dired-load-hook (lambda () (require 'dired-x)))

(setq dired-dwim-target t) ; suggest other visible dired buffer

(unless (package-installed-p 'wgrep)

(with-demoted-errors "%s"

(unless package-archive-contents

(package-refresh-contents))

(package-install 'wgrep)))

(add-hook 'kill-emacs-query-functions

'custom-prompt-customize-unsaved-options)

(desktop-save-mode 1) ; restore files from previous session

(save-place-mode 1) ; come back to where we were in that file

(global-set-key (kbd "C-+") 'text-scale-adjust) ; embiggen font

(setq-default indent-tabs-mode nil) ; don't insert tabs

(setq async-shell-command-buffer 'new-buffer) ;multiple async commands ok!

(setq async-shell-command-display-buffer nil) ;don't pop up the buffer

(setq comint-buffer-maximum-size 65336) ; must be able to cat War and Peace!

(add-hook 'comint-output-filter-functions 'comint-truncate-buffer)

use gnu emacs the plain text computing environment 579

;; goto-address-mode is handy in these modes

(dolist (hook '(shell-mode-hook eshell-mode-hook))

(add-hook hook #'goto-address-mode))

(add-hook 'prog-mode-hook #'goto-address-prog-mode)

(setq calendar-mark-holidays-flag t ; colorize holidays in the calendar

calendar-mark-diary-entries-flag t) ; also diary entries

(setq org-agenda-include-diary t) ; incorporate the diary into the agenda

(appt-activate +1) ; appointment notifications, please

(require 'notifications) ; also via desktop notifications

;; don't use a separate Frame for the control panel

(setq ediff-window-setup-function 'ediff-setup-windows-plain)

;; horizontal split is more readable

(setq ediff-split-window-function 'split-window-horizontally)

;; restore window config upon quitting ediff

(defvar ue-ediff-window-config nil "Window config before ediffing.")

(add-hook 'ediff-before-setup-hook

(lambda ()

(setq ue-ediff-window-config (current-window-configuration))))

(dolist (hook '(ediff-suspend-hook ediff-quit-hook))

(add-hook hook

(lambda ()

(set-window-configuration ue-ediff-window-config))))

Bibliography

• Abelson, Harold, Gerald Jay Sussman, Julie Sussman, Lytha Ayth
and Neil Van Dyke. 1996. Structure and Interpretation of Computer
Programs, Second Edition. Cambridge, MA: MIT Press. https://
www.neilvandyke.org/sicp-texi/

The famous Wizard Book, converted to Texinfo by Lytha Ayth and
Neil Van Dyke. Install this and you can read the book in Emacs
with hyperlinks, indexing, full-text search Emacs-style, easy-to-
evaluate Scheme code, and last but not least, ASCII diagrams.

• Ashley, Mike. 1999. The GNU Privacy Handbook. Cambridge, MA:
Free Software Foundation. https://www.gnupg.org/documentation/
guides.html

A tutorial introduction to GNU Privacy Guard (a.k.a. GnuPG
or GPG). Emacs can use GnuPG to work transparently with en-
crypted files.

• Auerbach, David. May 9, 2014. “The Oldest Rivalry in Comput-
ing.” Slate. https://slate.com/technology/2014/05/oldest-software-rivalry-emacs-and-vi-two-text-editors-used-by-programmers.
html

An excellent overview of the perennial Editor Wars and the bitter
Emacs / Vi rivalry.

• Ballantyne, Tony. 2018. My Emacs Writing Setup. https://github.
com/ballantony/emacs-writing/blob/main/EmacsWritingTips.

org

Good companion to Wood’s Guide to Emacs for Writers, this one by
a novelist, with lots of Org Mode tips.

• Batsov, Bozhidar. 2011. Why Emacs? https://batsov.com/articles/

2011/11/19/why-emacs/

A nice testimonial from the author of the Emacs Prelude starter
kit.

https://www.neilvandyke.org/sicp-texi/
https://www.neilvandyke.org/sicp-texi/
https://www.gnupg.org/documentation/guides.html
https://www.gnupg.org/documentation/guides.html
https://slate.com/technology/2014/05/oldest-software-rivalry-emacs-and-vi-two-text-editors-used-by-programmers.html
https://slate.com/technology/2014/05/oldest-software-rivalry-emacs-and-vi-two-text-editors-used-by-programmers.html
https://github.com/ballantony/emacs-writing/blob/main/EmacsWritingTips.org
https://github.com/ballantony/emacs-writing/blob/main/EmacsWritingTips.org
https://github.com/ballantony/emacs-writing/blob/main/EmacsWritingTips.org
https://batsov.com/articles/2011/11/19/why-emacs/
https://batsov.com/articles/2011/11/19/why-emacs/

582 keith waclena

• Borkowski, Marcin. 2021. Hacking Your Way Around in Emacs.
https://leanpub.com/hacking-your-way-emacs/

An intermediate Elisp text, suitable as a follow-up to Chassell.

• Borkowski, Marcin. 2018. “TEXing in Emacs.” TUGboat 39, no. 1.
https://www.tug.org/TUGboat/tb39-1/tb121borkowski-emacs.

pdf

An introduction to Emacs for TEX and LATEX users, including Org
Mode and a little Elisp programming.

• Cameron, Debra, James Elliott, Marc Loy, Eric S. Raymond and
Bill Rosenblatt. 2004. Learning GNU Emacs, 3rd Edition. Sebastopol,
CA: O’Reilly Media. https://www.oreilly.com/library/view/
learning-gnu-emacs/0596006489/

Very out-of-date, but not uselessly so; covers Emacs version 21.3.
A typical O’Reilly manual.

• Chassell, Robert J. 2020. An Introduction to Programming in Emacs
Lisp. Cambridge, MA: Free Software Foundation. https://www.
gnu.org/software/emacs/manual/eintr.html

Read in Emacs with M-x info-display-manual RET eintr RET.

A tutorial introduction to Elisp “written as an elementary intro-
duction for people who are not programmers”. Designed to be
read in Info, where you can evaluate and run all the code exam-
ples.

• Chua, Sacha. 2014. How to Learn Emacs Keyboard Shortcuts (A Vi-
sual Tutorial for Newbies). https://sachachua.com/blog/2013/09/
how-to-learn-emacs-keyboard-shortcuts-a-visual-tutorial-for-newbies/

A sketch-guide explaining the mysteries of Emacs key bindings.

• Chua, Sacha. 2016. How to Learn Emacs: A Hand-drawn One-pager for
Beginners. https://sachachua.com/blog/2013/05/how-to-learn-emacs-a-hand-drawn-one-pager-for-beginners/

A sketch-guide to the very basics.

• Finseth, Craig A. 1991. The Craft of Text Editing, or, A Cookbook for an
Emacs. Berlin: Springer-Verlag. http://www.finseth.com/craft/

https://leanpub.com/hacking-your-way-emacs/
https://www.tug.org/TUGboat/tb39-1/tb121borkowski-emacs.pdf
https://www.tug.org/TUGboat/tb39-1/tb121borkowski-emacs.pdf
https://www.oreilly.com/library/view/learning-gnu-emacs/0596006489/
https://www.oreilly.com/library/view/learning-gnu-emacs/0596006489/
https://www.gnu.org/software/emacs/manual/eintr.html
https://www.gnu.org/software/emacs/manual/eintr.html
https://sachachua.com/blog/2013/09/how-to-learn-emacs-keyboard-shortcuts-a-visual-tutorial-for-newbies/
https://sachachua.com/blog/2013/09/how-to-learn-emacs-keyboard-shortcuts-a-visual-tutorial-for-newbies/
https://sachachua.com/blog/2013/05/how-to-learn-emacs-a-hand-drawn-one-pager-for-beginners/
http://www.finseth.com/craft/

use gnu emacs the plain text computing environment 583

• Free Software Foundation. 2021. Comparing and Merging Files.
Cambridge, MA: Free Software Foundation. https://www.gnu.
org/software/diffutils/manual/diffutils.html

Read in Emacs with M-x info-display-manual RET diffutils

RET.

Complete documentation for the GNU diff, diff3, cmp, and sdiff
programs.

• Free Software Foundation. 2022. Emacs auth-source. Cambridge,
MA: Free Software Foundation. https://www.gnu.org/software/
emacs/manual/auth.html

Read in Emacs with M-x info-display-manual RET auth RET.

Centralized management of authentication information (user-
names, hosts, passwords) via any of several backends; used by
most Emacs applications that need to connect to external services
(Tramp, Gnus, GnuPG, etc).

• Free Software Foundation. 2022. Message. Cambridge, MA: Free
Software Foundation.

Read in Emacs with M-x info-display-manual RET message RET.

Documents the Emacs email message composition mode, used to
compose emails (or, if you go back in time, news postings).

• Free Software Foundation. 2022. Emacs Unified Directory Client.
Cambridge, MA: Free Software Foundation.

Read in Emacs with M-x info-display-manual RET eudc RET.

Documents the Emacs Unified Directory Client, an interface to
directory services (LDAP) and contacts (BBDB, macOS Contacts).

• Free Software Foundation. 2022. TRAMP User Manual. Cambridge,
MA: Free Software Foundation.

Read in Emacs with M-x info-display-manual RET tramp RET.

Documents the remote file editing capabilities of Emacs.

• Free Software Foundation. 2022. EasyPG Assistant User’s Manual.
Cambridge, MA: Free Software Foundation. https://www.gnu.
org/software/emacs/manual/epa.html

Read in Emacs with M-x info-display-manual RET epa RET.

How to use EPA to encrypt, decrypt, and sign files in Emacs.

https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/diffutils/manual/diffutils.html
https://www.gnu.org/software/emacs/manual/auth.html
https://www.gnu.org/software/emacs/manual/auth.html
https://www.gnu.org/software/emacs/manual/epa.html
https://www.gnu.org/software/emacs/manual/epa.html

584 keith waclena

• Free Software Foundation. 2017. The GNU Privacy Guard Manual.
Cambridge, MA: Free Software Foundation.

Read in Emacs with M-x info-display-manual RET gnupg RET.

The complete documentation for GnuPG.

• Free Software Foundation. 2020. Emms Manual. Cambridge, MA:
Free Software Foundation.

Read in Emacs with M-x info-display-manual RET emms RET.

Documentation for the Emacs Multimedia System (in short, music
player), EMMS.

• Free Software Foundation. 2020. EWW. Cambridge, MA: Free
Software Foundation. https://www.gnu.org/software/emacs/
manual/eww.html

Read in Emacs with M-x info-display-manual RET eww RET.

Documentation for the Emacs web browser, EWW.

• Free Software Foundation. 2020. Ediff. Cambridge, MA: Free Soft-
ware Foundation. https://www.gnu.org/software/emacs/manual/
ediff.html

Read in Emacs with M-x info-display-manual RET ediff RET.

Complete documentation for the powerful Ediff family of diffing
and merging tools.

• Free Software Foundation. 2020. Interactive Do. Cambridge, MA:
Free Software Foundation. https://www.gnu.org/software/
emacs/manual/ido.html

Read in Emacs with M-x info-display-manual RET ido RET.

Documents the Ido completion framework.

• Free Software Foundation. 2020. Autotyping. Cambridge, MA: Free
Software Foundation. https://www.gnu.org/software/emacs/
manual/autotype.html

Read in Emacs with M-x info-display-manual RET autotype RET.

One of the often overlooked Emacs manuals, documenting conve-
nient features for text that you enter frequently in Emacs, such as
expanded text templates (via Skeletons), file boilerplate, copyright
statements, timestamps, URLs, and the like.

https://www.gnu.org/software/emacs/manual/eww.html
https://www.gnu.org/software/emacs/manual/eww.html
https://www.gnu.org/software/emacs/manual/ediff.html
https://www.gnu.org/software/emacs/manual/ediff.html
https://www.gnu.org/software/emacs/manual/ido.html
https://www.gnu.org/software/emacs/manual/ido.html
https://www.gnu.org/software/emacs/manual/autotype.html
https://www.gnu.org/software/emacs/manual/autotype.html

use gnu emacs the plain text computing environment 585

• Free Software Foundation. 2020. GNU Emacs Reference Card. Cam-
bridge, MA: Free Software Foundation. https://www.gnu.org/
software/emacs/refcards/index.html

A classic-style, one-page, double-sided, tri-fold reference card for
your vest pocket (slip behind your pocket protector); available in
eight languages. The digital version is up-to-date, but the printed
(on card stock) version is currently stuck at v25. (At the level of
detail covered in card form, it can be pretty out-of-date and still be
perfectly fine.) At the URL there are also refcards for Calc, Dired,
Gnus, Org, and more.

• Free Software Foundation. 2020. The Org Manual. Cambridge,
MA: Free Software Foundation. https://www.gnu.org/software/
emacs/manual/org.html

Read in Emacs with M-x info-display-manual RET org RET.

The authoritative reference on Org Mode.

• Friedl, Jeffrey E. F. 2002. Mastering Regular Expressions. Sebastopol,
CA: O’Reilly.

The standard book-length work on using regular expressions.

• Gillespie, Dave. 2020. The GNU Emacs Calculator. Cambridge,
MA: Free Software Foundation. https://www.gnu.org/software/
emacs/manual/calc.html

Read in Emacs with M-x info-display-manual RET calc RET.

Extensive documentation for the powerful Emacs calculator and
computer algebra system.

• Glickstein, Bob. 1997. Writing GNU Emacs Extensions. Sebastopol,
CA: O’Reilly Media.

Probably describes Emacs version 19, so very out of date, but may
still be useful. Covers Emacs customization in the init file, and
implementing things like major and minor modes.

• Graham, Paul. 1994. On Lisp: Advanced Techniques for Common Lisp.
Englewood Cliffs, NJ: Prentice Hall. http://www.paulgraham.com/
onlisptext.html

• Guerry, Bastien. 2013. Learn Emacs Lisp in 15 minutes. https://
learnxinyminutes.com/docs/elisp/

Describes Emacs version 24.3, but almost certainly compatible with
the latest version.

https://www.gnu.org/software/emacs/refcards/index.html
https://www.gnu.org/software/emacs/refcards/index.html
https://www.gnu.org/software/emacs/manual/org.html
https://www.gnu.org/software/emacs/manual/org.html
https://www.gnu.org/software/emacs/manual/calc.html
https://www.gnu.org/software/emacs/manual/calc.html
http://www.paulgraham.com/onlisptext.html
http://www.paulgraham.com/onlisptext.html
https://learnxinyminutes.com/docs/elisp/
https://learnxinyminutes.com/docs/elisp/

586 keith waclena

• Hinman, Lee. 2017. Clocking Time with Org-mode. https://writequit.
org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.

html

An overview of and tutorial for Org Mode’s timeclock facility.

• Hoyte, Doug. 2008. Let Over Lambda: 50 Years of Lisp. https://
letoverlambda.com/

• Ingebrigtsen, Lars Magne. 2020. The Gnus Newsreader. Cambridge,
MA: Free Software Foundation. https://www.gnu.org/software/
emacs/manual/gnus.html

Read in Emacs with M-x info-display-manual RET gnus RET.

Complete documentation for the Gnus newsreader and Mail User
Agent. Includes a comprehensive discussion of how to program
the Gnus API in Elisp. Lars’s writing style is inimitable and the
huge manual is unexpectedly hilarious.

• Kaludercic, Philip. June 2, 2020. Rmail is a Usable Emacs Mail Client.
http://ruzkuku.com/texts/rmail.html

A good overview of the Rmail Mail User Agent.

• Knuth, Donald E. 1984. “Literate Programming.” The Computer
Journal 27, no. 2: 97–111. http://www.literateprogramming.com/
knuthweb.pdf

• Krawitz, Robert, Bil Lewis, Dan LaLiberte, Richard M. Stallman
and Chris Welty. 2019. GNU Emacs Lisp Reference Manual. Cam-
bridge, MA: Free Software Foundation. https://www.gnu.org/
software/emacs/manual/elisp.html

Read in Emacs with M-x info-display-manual RET elisp RET.

The bible of Emacs Lisp; complete Elisp details for writing config
files and extensions, and general purpose programming.

• Kremer, Sebastian and Free Software Foundation. 2022. Dired
Extra. Cambridge, MA: Free Software Foundation.

Read in Emacs with M-x info-display-manual RET dired-x RET.

Documents additional features for Dired.

https://writequit.org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.html
https://writequit.org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.html
https://writequit.org/denver-emacs/presentations/2017-04-11-time-clocking-with-org.html
https://letoverlambda.com/
https://letoverlambda.com/
https://www.gnu.org/software/emacs/manual/gnus.html
https://www.gnu.org/software/emacs/manual/gnus.html
http://ruzkuku.com/texts/rmail.html
http://www.literateprogramming.com/knuthweb.pdf
http://www.literateprogramming.com/knuthweb.pdf
https://www.gnu.org/software/emacs/manual/elisp.html
https://www.gnu.org/software/emacs/manual/elisp.html

use gnu emacs the plain text computing environment 587

• Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution. Gar-
den City, NY: Anchor Press / Doubleday.

History of the hackers of the MIT AI Lab who built the Lisp Ma-
chines and Emacs, the personal computer hackers who built Basic
and the Apple computer, and the hackers behind early computer
gaming. The Epilogue, “The Last of the True Hackers” tells the
story of Richard Stallman’s epic battle against the renegades who
would bring down the AI Lab’s Lisp Machine.

• McIlroy, M.D., E.N. Pinson and B.A. Tague. July-August 1978.
“UNIX Time-Sharing System: Forward.” Bell System Technical
Journal 57, no. 6: 1899-1904. https://archive.org/details/
bstj57-6-1899/page/n1/mode/2up

• Mendler, Daniel. [2021]. vertico.el—VERTical Interactive COmpletion.
https://github.com/minad/vertico/blob/main/README.org

A very modern, minimal, and extensible incremental narrowing
completion framework for the Minibuffer. Available from GNU
ELPA.

• Monnier, Stefan and Michael Sperber. 2020. “Evolution of Emacs
Lisp.” Proceedings of the ACM on Programming Languages 4, HOPL
Article 74. doi:10.1145/3386324

Detailed technical article on the history of the Emacs Lisp pro-
gramming language, with particular attention paid to its unique
features.

• Murphy, Dan. 2009. “The Beginnings of TECO.” IEEE Annals of the
History of Computing 31, no. 4: 110–115. http://tenex.opost.com/
anhc-31-4-anec.pdf

History of the TECO text editor, both Emacs’s direct predecessor
and its first implementation language. A fascinating must-read!

• Pereira, Murilo. January 3, 2021. How to Open a File in Emacs.
https://www.murilopereira.com/how-to-open-a-file-in-emacs/

A thoughtful consideration of the state of Emacs, its core values,
and possible futures. Begins with a tour-de-force demonstration of
Emacs the Lisp Machine via a debugging problem.

https://archive.org/details/bstj57-6-1899/page/n1/mode/2up
https://archive.org/details/bstj57-6-1899/page/n1/mode/2up
https://github.com/minad/vertico/blob/main/README.org
https://doi.org/10.1145/3386324
http://tenex.opost.com/anhc-31-4-anec.pdf
http://tenex.opost.com/anhc-31-4-anec.pdf
https://www.murilopereira.com/how-to-open-a-file-in-emacs/

588 keith waclena

• Petersen, Mickey. n.d. Mastering Emacs. https://www.masteringemacs.
org/

I haven’t seen this commercial e-book, but based on the articles on
Petersen’s blog, it looks superb. Petersen seems to always have a
new version of the book ready whenever a new version of Emacs
is released.

• Post, Ed. July 1983. “Real Programmers Don’t Use Pascal.” Data-
mation. https://www.ee.ryerson.ca/~elf/hack/realmen.html

Hilarious send-up of programming stereotypes, circa the early
days of Emacs.

• Poundstone, William. 1985. The Recursive Universe: Cosmic Complex-
ity and the Limits of Scientific Knowledge. Chicago: Contemporary
Books.

The best published examination of Conway’s cellular automaton,
Life. Poundstone considers computers, algorithms, complexity,
and shows how to build a computer out of a “game” with four
trivial rules. Great stuff.

• Raymond, Eric S,. 2004. The Art of Unix Programming. Boston:
Addison-Wesley.

Book-length treatment of the Unix Philosophy and the Open
Source movement.

• Raymond, Eric S. and Guy L. Steele. 1996. The New Hacker’s Dic-
tionary, 3rd edition. Cambridge, MA: MIT Press. http://www.catb.
org/~esr/jargon/

Raymond’s controversial update of the The Hacker’s Dictionary
to include more recent entries from the world of Usenet, Unix,
microcomputers, and the nascent World Wide Web.

• Reid, Brian, Jim Larus, Stephen Gildea and Bill Wohler. 2016. The
MH-E Manual. Cambridge, MA: Free Software Foundation. https:
//www.gnu.org/software/emacs/manual/mh-e.html

Read in Emacs with M-x info-display-manual RET mh-e RET.

Complete documentation for the MH-E Mail User Agent.

https://www.masteringemacs.org/
https://www.masteringemacs.org/
https://www.ee.ryerson.ca/~elf/hack/realmen.html
http://www.catb.org/~esr/jargon/
http://www.catb.org/~esr/jargon/
https://www.gnu.org/software/emacs/manual/mh-e.html
https://www.gnu.org/software/emacs/manual/mh-e.html

use gnu emacs the plain text computing environment 589

• Reingold, Edward M. and Nachum Dershowitz. 2018. Calendrical
Calculations: The Ultimate Edition. Cambridge, UK: Cambridge
University Press.

The basic reference on algorithms for calculations on dates and
calendars, this book originates in Emacs Lisp code written by
mathematician Reingold for the Emacs Calendar subsystem.

• Ritchie, Dennis. February 12, 2004. An incomplete history of the QED
Text Editor. Murray Hill, NJ: Bell Labs. https://www.bell-labs.
com/usr/dmr/www/qed.html

Interesting history of the many versions of the QED text editor in
which Ken Thompson first implemented regular expressions.

• Schulte, Eric, Dan Davison, Thomas Dye and Carsten Dominik.
2012. “A Multi-Language Computing Environment for Literate
Programming and Reproducible Research.” Journal of Statistical
Software 46, no. 3: 1–24. doi:10.18637/jss.v046.i03 https://doi.

org/10.18637/jss.v046.i03

Good overview of using Org Mode for scientific research, covering
publication, statistical analysis, and embedded data and source
code for reproducible research,

• Selk, Avi. May 4, 2018. “One space between each sentence, they
said. Science just proved them wrong.” The Washington Post.
https://www.washingtonpost.com/news/speaking-of-science/

wp/2018/05/04/one-space-between-each-sentence-they-said-science-just-proved-them-wrong-2/

• Stallman, Richard M. 28 Oct 2002. My Lisp Experiences and the
Development of GNU Emacs. San Francisco: International Lisp Con-
ference. https://www.gnu.org/gnu/rms-lisp.html

Stallman’s personal history with Lisp and how it fits into the
Emacs story.

• Stallman, Richard M. 1981. EMACS: The Extensible, Customizable,
Self-Documenting Display Editor. https://www.gnu.org/software/
emacs/emacs-paper.html

An extremely interesting article on the design of Emacs. Predates
GNU Emacs; covers the original TECO Emacs and Lisp Machines
Emacs.

https://www.bell-labs.com/usr/dmr/www/qed.html
https://www.bell-labs.com/usr/dmr/www/qed.html
https://doi.org/10.18637/jss.v046.i03
https://doi.org/10.18637/jss.v046.i03
https://doi.org/10.18637/jss.v046.i03
https://www.washingtonpost.com/news/speaking-of-science/wp/2018/05/04/one-space-between-each-sentence-they-said-science-just-proved-them-wrong-2/
https://www.washingtonpost.com/news/speaking-of-science/wp/2018/05/04/one-space-between-each-sentence-they-said-science-just-proved-them-wrong-2/
https://www.gnu.org/gnu/rms-lisp.html
https://www.gnu.org/software/emacs/emacs-paper.html
https://www.gnu.org/software/emacs/emacs-paper.html

590 keith waclena

• Stallman, Richard M. 2020. GNU Emacs Manual. Cambridge, MA:
Free Software Foundation. https://www.gnu.org/software/
emacs/manual/emacs.html

Read in Emacs with M-x info-display-manual RET emacs RET.

The authoritative user’s reference; also a fine introduction. The
complete text is available in Emacs via Info; type C-h r to read it.

• Steele, Guy L., Jr., Donald R. Woods, Raphael A. Finkel, Mark R.
Crispin, Richard M. Stallman and Geoffrey S. Goodfellow. 1983.
The Hacker’s Dictionary: A Guide to the World of Computer Wizards.
New York: Harper & Row. http://www.catb.org/~esr/jargon/

The first published book version of the famous Jargon File, the
glossary of the lingo of the hackers of the Arpanet era, including
MIT’s TECO and Emacs hackers. An amazing, hilarious, and im-
portant historical document. See also Raymond’s New Hacker’s
Dictionary; the URL points to his online version.

• Stephenson, Neal. 1999. In the Beginning . . . Was the Command
Line. New York: Avon Books. https://web.archive.org/web/
20180218045352/http://www.cryptonomicon.com/beginning.html

• Thompson, Silvanus P. 1911. Calculus Made Easy: Being a Very-
simplest Introduction to Those Beautiful Methods of Reckoning Which
Are Generally Called By the Terrifying Names of the Differential Calcu-
lus and the Integral Calculus. London: Macmillan.

• Wiegley, John. 2020. Eshell. Cambridge, MA: Free Software Foun-
dation. https://www.gnu.org/software/emacs/manual/eshell.
html

Read in Emacs with M-x info-display-manual RET eshell RET.

The authoritative reference on Eshell.

• Wood, Randall. 2011. The Woodnotes Guide to Emacs for Writ-
ers. http://therandymon.com/woodnotes/emacs-for-writers/
emacs-for-writers.html

Probably describes Emacs version 23.2. A tutorial specifically for
non-programmers, emphasizing topics like “Foreign Languages
and Foreign Characters,” “Occasional Diacriticals,” “Writing in a
Foreign Alphabet,” “Inserting Special Characters ,” “Word wrap,”
“Reformatting Hard Wrapped Documents,” “Cleaning Up Spac-
ing”.

https://www.gnu.org/software/emacs/manual/emacs.html
https://www.gnu.org/software/emacs/manual/emacs.html
http://www.catb.org/~esr/jargon/
https://web.archive.org/web/20180218045352/http://www.cryptonomicon.com/beginning.html
https://web.archive.org/web/20180218045352/http://www.cryptonomicon.com/beginning.html
https://www.gnu.org/software/emacs/manual/eshell.html
https://www.gnu.org/software/emacs/manual/eshell.html
http://therandymon.com/woodnotes/emacs-for-writers/emacs-for-writers.html
http://therandymon.com/woodnotes/emacs-for-writers/emacs-for-writers.html

use gnu emacs the plain text computing environment 591

• Zawinski, Jamie. 2000. Tabs Versus Spaces: An Eternal Holy War.
https://www.jwz.org/doc/tabs-vs-spaces.html

The authoritative explanation of the debate.

• [DeVault, Drew]. [n.d.]. Use plaintext email: Why is plaintext better
than HTML? https://useplaintext.email/#why-plaintext

A reasoned analysis of why you might want to read your email in
Emacs.

• [Krehel, Oleh]. n.d. Ivy User Manual. https://oremacs.com/
swiper/

Read in Emacs with M-x info-display-manual RET ivy RET.

Documentation for the Ivy incremental narrowing completion
framework for the Minibuffer. Available from GNU ELPA.

https://www.jwz.org/doc/tabs-vs-spaces.html
https://useplaintext.email/#why-plaintext
https://oremacs.com/swiper/
https://oremacs.com/swiper/

Index

*, 485

.FILENAME, 188

/ k, 277

/ n, 277

<down>, 306

<left>, 81

<right>, 81, 161

=, 479, 485

= h, 489

FILENAME, 186

#, 485

c, 485

f, 485

% &, 203

% d, 203

&, 356, 451

˜, 203, 484

/.authinfo, 407

5x5, 550

A, 242

abbrev-mode, 315

abbrev-prefix-mark, 318

Abbreviations, 295, 315

Abbrevs, 295, 315

Abelson, Harold, 581

abort-recursive-edit, 322

Abrahamsen, Per, 5

add-global-abbrev, 316

add-hook, 146, 415

add-mode-abbrev, 315

agenda, Org Mode, 385

ampc, 495

append-next-kill, 74, 87

append-to-buffer, 75

append-to-buffer, 259

append-to-buffer-with-

newline, 74, 75

append-to-register, 302

apply-macro-to-region-

lines, 258, 263

appt-add, 464

appt-delete, 464

apropos, 104

apropos-command, 99

apropos-command, 103, 421

apropos-documentation, 104

apropos-local-variable, 104

apropos-user-option, 104

apropos-user-option, 145

apropos-value, 104

apropos-variable, 104

archive file, 190

archiving, Org Mode, 385

Ashley, Mike, 581

Astronomy, 461

asymmetric encryption, 533

async-shell-command, 434

Atom (web syndication), 505

attachments, Org Mode, 385

Auerbach, David, 581

auth-source, 407

auth-sources, 407

authentication, 407

authentication file, 407

authinfo-mode, 408

594 keith waclena

auto-coding-alist, 352

auto-compression-mode, 174,
189

auto-encryption-mode, 174,
190

auto-mode-alist, 143

auto-revert-mode, 136

auto-revert-mode, 185, 192,
194

auto-revert-tail-mode, 185

auto-save files, 186

auto-save-mode, 182

Autoloading, of functions, 275

Ayth, Lytha, 581

B, 452

b, 452

Babel, Org Mode, 389

back-to-indentation, 337

backup files, 186

backup files, numbered, 186

backup-directory-alist, 186

backward-char, 81

backward-kill-word, 81

backward-kill-word, 252

backward-page, 84

backward-paragraph, 83

backward-sentence, 83

backward-sentence, 54

backward-sexp, 85

backward-up-list, 86

backward-word, 81

backward-word, 306

balance-windows, 161

Ballantyne, Tony, 49, 581

bash, 442

Batsov, Bozhidar, 581

before-save-hook, 330

beginning-of-buffer, 84

beginning-of-buffer, 231, 490

beorg, 392

binary data files, 195

binary-overwrite-mode, 196

blackbox, 549

blink-cursor-mode, 326

Blogs, Emacs-related, 426

bookmark-bmenu-delete, 313

bookmark-bmenu-edit-

annotation, 313

bookmark-bmenu-execute-

deletions, 313

bookmark-bmenu-list, 311, 312

bookmark-bmenu-relocate, 313

bookmark-bmenu-rename, 313

bookmark-bmenu-show-all-

annotations, 313

bookmark-bmenu-show-

annotation, 313

bookmark-insert, 312

bookmark-insert-location,
311, 312

bookmark-jump, 311

bookmark-set, 311, 452

bookmark-set-no-overwrite,
311

Bookmarks, 311

Borkowski, Marcin, 131, 582

Brecht, Bertolt, 480

browse-url, 437, 454, 456

browse-url-at-point, 454

browse-url-chrome, 455

browse-url-chromium, 455

browse-url-default-macosx-

browser, 455

browse-url-default-windows-

browser, 455

browse-url-elinks, 455

browse-url-epiphany, 455

browse-url-firefox, 455

browse-url-generic, 455

browse-url-generic-args, 455

browse-url-generic-program,
455

browse-url-handlers, 456

browse-url-kde, 455

browse-url-mozilla, 455

browse-url-of-buffer, 455

browse-url-of-dired-file,

use gnu emacs the plain text computing environment 595

455

browse-url-of-file, 455

browse-url-of-region, 455

browse-url-secondary-

browser-function, 454

browse-url-text-browser, 455

browse-url-text-emacs, 455

browse-url-text-xterm, 455

browse-url-w3, 455

browse-url-xdg-open, 455

Browser, web, 447

browsing images, 194

bs-show, 137, 138

bubbles, 549

buffer-menu-mode, 138

buffers, reverting, 185

butterfly, 551

bzip2, 189

C, 453, 525

c, 203

C-+, 325

C-/, 212, 251

C-<return>, 343

C-\, 350

C-˜, 251

C-], 322

C-a, 82

C-a, 337

C-b, 81

C-c C-d, 440

C-c C-j, 444

C-c C-k, 444

C-c C-o, 440

C-c C-o, 437

C-c C-p, 438

C-c C-r, 439

C-c C-t, 193

C-c M-o, 440

C-c ., 386

C-c <C-left>, 157

C-c <C-right>, 157

C-c $, 385

C-c C-c, 193, 194, 282, 318,
371, 471, 499

C-c C-k, 371, 471

C-c C-n, 438

C-c C-r, 437

C-c C-s, 440

C-c C-t, 387

C-c C-w, 385

C-c C-x, 194

C-c C-x C-w, 453

C-c RET, 438, 456

C-d, 81, 256

C-d, 55

C-e, 82

C-e, 24

C-f, 81, 256

C-f, 129, 161, 253, 306

C-g, 53, 70, 117, 253, 257, 258,
306, 325, 391, 433, 499

C-h, 99

C-h a, 99

C-h C-c, 163

C-h d, 104

C-h e, 113

C-h f, 100, 114

C-h i, 99

C-h k, 99

C-h l, 114

C-h m, 100

C-h m, 144, 191, 444

C-h o, 99

C-h p, 100

C-h r, 100

C-h t, 100

C-h t, 41

C-h b, 350

C-h c, 265, 416

C-h C-f, 425

C-h C-n, 281

C-h F, 107

C-h f, 107, 405, 423

C-h h, 348

C-h K, 107

C-h k, 107

596 keith waclena

C-h L, 348

C-h m, 136, 152, 312, 473, 506

C-h o, 95

C-h P, 276, 401, 406, 506, 531

C-h p, 276, 277

C-h R, 107

C-h v, 95, 413, 415

C-h w, 99

C-h w, 101, 416

C-k, 82

C-l, 163, 222

C-M-/, 297

C-M-<return>, 343

C-M-%, 206, 208, 233

C-M-\, 337

C-M-a, 87

C-M-b, 85

C-M-c, 322

C-M-c, 232

C-M-d, 86

C-M-e, 87

C-M-f, 85

C-M-h, 87

C-M-k, 86

C-M-l, 163

C-M-mouse-1, 306

C-M-o, 336

C-M-r, 116, 225

C-M-s, 225

C-M-u, 86

C-M-v, 64

C-M-v, 100, 161

C-M-w, 74, 87

c-mode, 342

C-n, 82

C-n, 162, 165, 168, 238, 308

C-o, 309, 336

C-p, 82

C-p, 162, 165, 238

C-q, 130, 317, 335

C-r, 116, 118, 193, 223, 321, 439

C-s, 110, 193, 220, 245, 494

C-SPC, 66, 89

C-t, 81

C-t, 193

C-u, 205

C-u -1 M-k, 83

C-u 0 C-k, 82

C-v, 64

C-v, 161, 222

C-w, 67

C-w, 252, 306

C-x 0, 62

C-x 1, 63

C-x 2, 62

C-x 3, 62

C-x 3, 63

C-x 4 f, 182

C-x 4 r, 182

C-x 5 f, 182

C-x 5 r, 182

C-x =, 65

C-x [, 84

C-x], 84

C-x b, 61

C-x b, 62, 113, 115, 116, 119,
144

C-x C-b, 61

C-x C-c, 571

C-x C-f, 60

C-x C-f, 62, 115–117, 119, 181,
182, 187, 190, 440

C-x C-i, 67

C-x C-j, 216

C-x C-l, 67

C-x C-l, 338

C-x C-p, 84

C-x C-q, 62

C-x C-q, 181

C-x C-r, 181

C-x C-r, 182, 184

C-x C-s, 60

C-x C-t, 82

C-x C-u, 67, 433

C-x C-u, 338

C-x C-v, 181

C-x C-x, 67, 72, 87

C-x ESC ESC, 118

use gnu emacs the plain text computing environment 597

C-x h, 85

C-x k, 61

C-x k, 181, 185, 440

C-x l, 113

C-x o, 63

C-x o, 118

C-x s, 61

C-x v +, 472

C-x v , 472

C-x v a, 472

C-x v b, 472

C-x v D, 472

C-x v d, 472

C-x v G, 472

C-x v g, 472

C-x v h, 472

C-x v I, 472

C-x v i, 472

C-x v L, 472

C-x v l, 472

C-x v M, 472

C-x v m, 472

C-x v M D, 472

C-x v O, 472

C-x v P, 472

C-x v r, 472

C-x v s, 472

C-x v u, 472

C-x v v, 472

C-x v x, 472

C-x v, 472

C-x +, 161

C-x -, 160

C-x 0, 154, 178, 253

C-x 1, 100, 154, 165, 178

C-x 2, 154, 169, 253

C-x 3, 154, 164, 167

C-x 4 0, 136

C-x 4 b, 131

C-x 4 C-f, 183

C-x 4 C-j, 216

C-x 4 m, 498

C-x 5 0, 178

C-x 5 1, 178

C-x 5 2, 178

C-x 5 b, 132

C-x 5 f, 365

C-x 5 m, 498

C-x 5 o, 178

C-x 8 RET, 349

C-x <, 56, 166

C-x <C-left>, 132

C-x <C-left>, 132, 137

C-x <C-right>, 132

C-x <C-right>, 132, 137

C-x =, 139

C-x >, 166

C-x #, 364

C-x $, 344

C-x `, 227, 239, 289, 366

C-x a g, 316

C-x a i g, 316

C-x a i l, 316

C-x a l, 315

C-x b, 116, 131, 133, 137, 151

C-x C-+, 325

C-x C--, 325

C-x C-0, 325

C-x C-b, 136, 137

C-x C-c, 178, 285, 369, 417

C-x C-f, 116, 134, 199, 289,
355, 366, 471

C-x C-k b, 266, 303

C-x C-k C-c, 263

C-x C-k C-d, 262

C-x C-k C-e, 264

C-x C-k C-f, 264

C-x C-k C-n, 262

C-x C-k C-p, 262

C-x C-k C-v, 262

C-x C-k e, 265

C-x C-k l, 258, 265

C-x C-k n, 266

C-x C-k r, 258, 263

C-x C-k SPC, 265

C-x C-k x, 303

C-x C-o, 309, 336

C-x C-q, 208

598 keith waclena

C-x C-r, 183

C-x C-s, 151, 184, 273, 326

C-x C-SPC, 90, 132

C-x C-u, 252, 306

C-x C-v, 361

C-x C-w, 133, 184, 440, 487

C-x C-x, 222, 306

C-x d, 199, 216, 355

C-x e, 257

C-x ESC ESC, 119

C-x h, 252, 536

C-x i, 252, 312

C-x k, 136, 152

C-x l, 128

C-x m, 498

C-x n n, 139, 140, 257

C-x n w, 140, 258

C-x o, 131

C-x o, 100, 155, 178

C-x p s, 441

C-x p v, 476

C-x q, 262

C-x RET C-\, 350

C-x RET r, 352

C-x r +, 302

C-x r c, 306

C-x r C-SPC, 303

C-x r d, 307

C-x r f, 180, 303

C-x r g, 302

C-x r i, 301, 302

C-x r j, 157, 301, 303

C-x r k, 307

C-x r l, 312

C-x r m, 452

C-x r N, 263

C-x r N, 334

C-x r o, 306

C-x r r, 302

C-x r s, 302

C-x r SPC, 302

C-x r t, 307

C-x r w, 157, 179, 303

C-x r x, 302

C-x r y, 307, 308

C-x s, 184, 286, 319

C-x SPC, 306, 307

C-x TAB, 337

C-x t 2, 158

C-x u, 251

C-x v =, 479

C-x v D, 479

C-x v d, 470, 476

C-x v i, 473

C-x v l, 466

C-x v v, 470

C-x x g, 136, 185

C-x x r, 134

C-y, 301

Calc, 388

calendar, 386

calendar, 151, 253, 459

Calendar, 459

calendar-astro-goto-day-

number, 462

calendar-astro-print-day-

number, 462

calendar-bahai-goto-date,
462

calendar-bahai-print-date,
462

calendar-chinese-goto-date,
462

calendar-chinese-print-

date, 462

calendar-coptic-goto-date,
462

calendar-coptic-print-date,
462

calendar-count-days-region,
460

calendar-cursor-holidays,
461

calendar-ethiopic-goto-

date, 462

calendar-ethiopic-print-

date, 462

calendar-french-goto-date,

use gnu emacs the plain text computing environment 599

462

calendar-french-print-date,
462

calendar-hebrew-goto-date,
462

calendar-hebrew-print-date,
462

calendar-islamic-goto-date,
462

calendar-islamic-print-

date, 462

calendar-iso-goto-date, 462

calendar-iso-goto-week, 462

calendar-iso-print-date, 462

calendar-julian-goto-date,
462

calendar-julian-print-date,
462

calendar-latitude, 459

calendar-list-holidays, 461

calendar-location-name, 460

calendar-longitude, 459

calendar-lunar-phases, 461

calendar-mark-holidays, 461

calendar-mayan-print-date,
462

calendar-persian-goto-date,
462

calendar-persian-print-

date, 462

calendar-print-other-dates,
462

calendar-sunrise-sunset, 461

calendar-sunrise-sunset-

month, 461

calendar-unmark, 461, 463

Cameron, Debra, 582

capitalize-region, 338

capitalize-word, 265, 338

capture, Org Mode, 373

cd, 135

character sets, 347, 348, 352

Chassell, Robert J., 418, 582

checkpoint files, 186

chess, 549

chess-ics, 549

Chua, Sacha, 426, 582

clean-buffer-list, 137

clear-rectangle, 306

coding systems, 347, 348, 352

column-number-mode, 175

comint-buffer-maximum-size,
441

comint-clear-buffer, 440

comint-copy-old-input, 438

comint-delete-output, 440

comint-delete-output, 437

comint-history-isearch-

backward-regexp, 439

comint-mode, 438

comint-next-input, 438

comint-next-prompt, 438

comint-output-filter-

functions, 441

comint-previous-input, 438

comint-previous-prompt, 438

comint-send-eof, 440

comint-show-output, 439

comint-show-output, 437

comint-truncate-buffer, 441

comint-write-output, 440

command-history-repeat, 119

Community, 425

compare-windows, 490

compilation-mode, 169

compile, 91, 289, 356, 366

complete-symbol, 298

Completion, at point, 295

Completion, pop-up, 297

compose-mail, 498

compose-mail-other-frame,
498

compose-mail-other-window,
498

compression, file, 189

Conference, Emacs, 426

confirm-kill-emacs, 103, 414

conflicts, file, 188

600 keith waclena

Cook, Mary Rose, 5

copy-rectangle-as-kill, 307

copy-rectangle-to-register,
302, 306

copy-to-register, 302

count-lines, 422

count-lines-page, 113, 128

count-words-region, 433

count-words-region, 99

Cox-Buday, Katherine, 5, 375

Crispin, Mark R., 590

cryptographic signatures, 406

cryptography, public-key, 533

cua-mode, 76

Cubitt, Toby, 254

custom-theme-save, 326

customization, 411

customize, 270

customize-apropos, 270

customize-changed, 273

customize-changed-options,
273

customize-create-theme, 326

customize-customized, 273

customize-face, 272

customize-group, 83

customize-group, 175, 179,
270, 296, 326, 329, 370,
396, 398, 457, 461, 464,
465, 491, 506

customize-mode, 145

customize-option, 413, 498

customize-rogue, 274

customize-saved, 273, 274

customize-themes, 325

customize-unsaved, 273

customize-variable, 209

customize-variable, 96, 330,
397, 407, 408, 460, 466, 525

D, 254, 449, 488, 534

d, 111, 451

dabbrev-completion, 297

dabbrev-expand, 125, 295, 297

Dabbrevs, 295

Davison, Dan, 589

debugger-quit, 418

decipher, 550

decipher-mode, 550

decryption, 533

default-directory, 135, 356,
440, 476

define-global-abbrev, 316

define-mode-abbrev, 316

DEL, 81

DEL, 221

delete-backward-char, 81

delete-backward-char, 49

delete-blank-lines, 309, 336

delete-char, 81, 256

delete-char, 55

delete-duplicate-lines, 331

delete-file, 432

delete-file, 254, 534

delete-frame, 178

delete-other-frames, 178

delete-other-windows, 63

delete-other-windows, 100,
154, 165, 178

delete-rectangle, 306, 307

delete-trailing-whitespace,
330, 335

delete-window, 62

delete-window, 154, 178, 253

delete-windows-on, 154

Dershowitz, Nachum, 588

describe-bindings, 350

describe-copying, 163

describe-current-coding-

system, 172, 352

describe-function, 100, 107,
114, 405

describe-key, 99

describe-key, 107

describe-key-briefly, 265,
416

describe-language-

environment, 348

use gnu emacs the plain text computing environment 601

describe-mode, 100

describe-mode, 136, 144, 152,
191, 312, 444, 473, 506

describe-package, 276, 401,
406, 506, 531

describe-symbol, 99

describe-symbol, 95

describe-variable, 95, 413

Desktop, 286

desktop-clear, 286

desktop-files-not-to-save,
286

desktop-restore-eager, 287

desktop-save-mode, 286, 448

DeVault, Drew, 591

diary, 463

Diary, 463

diary-file, 463

diary-mark-entries, 463

diary-show-all-entries, 463

diary-view-entries, 463

diff, 479, 480

diff(1), 479

diff-backup, 479

diff-buffer-with-file, 479

diff-buffers, 479

diff-mode, 167, 473, 480

Diffing, 479

Diffing, simple, 479

directory, editing, 199

directory-local variables, 97

directory-local variables,
security of, 403

Dired, 199

dired, 199, 216, 355, 416, 443

dired-change-marks, 205

dired-compare-directories,
211

dired-diff, 210, 479

dired-do-async-shell-

command, 212, 356

dired-do-chmod, 205

dired-do-compress, 202

dired-do-compress-to, 203

dired-do-delete, 203, 254, 534

dired-do-find-regexp, 209,
242

dired-do-find-regexp-and-

replace, 210, 255

dired-do-flagged-delete, 203

dired-do-isearch, 210

dired-do-isearch-regexp, 210

dired-do-print, 395

dired-do-redisplay, 202, 211

dired-do-rename-regexp, 206

dired-do-shell-command, 212,
216, 356, 490

dired-dwim, 209

dired-dwim-target, 209

dired-find-file, 200

dired-flag-backup-files, 203

dired-flag-file-deletion,
203

dired-flag-files-regexp, 203

dired-flag-garbage-files,
203

dired-garbage-files-regexp,
203

dired-hide-details-mode, 212

dired-hide-subdir, 202

dired-jump, 216

dired-jump-other-window, 216

dired-listing-switches, 212

dired-mark, 204

dired-mark-omitted, 212

dired-maybe-insert-subdir,
200

dired-mode, 199, 200, 327, 455

dired-next-marked-file, 204

dired-number-of-marked-

files, 206

dired-omit-extensions, 212

dired-omit-files, 212

dired-omit-mode, 212

dired-prev-marked-file, 204

dired-sort-toggle-or-edit,
211

dired-toggle-marks, 214

602 keith waclena

dired-toggle-marks, 204

dired-toggle-read-only, 208

dired-unmark, 203, 204

dired-unmark-all-marks, 204

Dired. decrypting files, 539

Dired. encrypting files, 539

Dired. GnuPG, 539

display-battery-mode, 175

display-time-mode, 175

doc-view-mode, 185, 192

doc-view-open-text, 193

doc-view-reset-slice, 194

doc-view-search, 193

doc-view-search-backward,
193

doc-view-set-slice-from-

bounding-box, 194

doc-view-set-slice-using-

mouse, 194

doc-view-show-tooltip, 193

doc-view-toggle-display, 193

doctor, 551

document file, 191

Dominik, Carsten, 375, 589

down-list, 86

downcase-region, 67

downcase-region, 338

downcase-word, 208, 338

drawers, Org Mode, 385

dunnet, 549

DVI file, 191

Dvorak keyboard input
method, 350

Dye, Thomas, 589

Dynamic abbreviations, 295

E, 449

e-book, 191

EasyPG Assistant (EPA), 533

ediff, 443, 481–483, 486

ediff-backup, 483

ediff-buffers, 483

ediff-buffers3, 483

ediff-collect-custom-diffs,
489

ediff-current-file, 188, 483

ediff-directories, 488, 489

ediff-directories3, 489

ediff-directory-revisions,
489

ediff-files, 483, 488

ediff-files3, 483

ediff-hide-marked-sessions,
489

ediff-inferior-compare-

regions, 485

ediff-make-or-kill-fine-

diffs, 485

ediff-mark-for-hiding-at-

pos, 489

ediff-merge, 485–487

ediff-merge-buffers, 487

ediff-merge-buffers-with-

ancestor, 487

ediff-merge-directories, 489

ediff-merge-directories-

with-ancestor, 489

ediff-merge-directory-

revisions, 489

ediff-merge-directory-

revisions-with-

ancestor, 489

ediff-merge-files, 487

ediff-merge-files-with-

ancestor, 487

ediff-merge-revisions, 487

Ediff-merge-revisions-with-
ancestor, 487

ediff-merge-with-ancestor,
487

ediff-meta-mark-equal-

files, 489

ediff-mode, 482

ediff-patch-buffer, 490

ediff-patch-file, 490

ediff-quit, 486, 487

ediff-regions-linewise, 483

use gnu emacs the plain text computing environment 603

ediff-regions-wordwise, 483

ediff-revision, 483

ediff-show-dir-diffs, 488

ediff-show-registry, 489

ediff-swap-buffers, 484

ediff-toggle-autorefine, 485

ediff-toggle-hilit, 485

ediff-toggle-ignore-case,
485

ediff-toggle-regexp-match,
485

ediff-toggle-skip-similar,
485

ediff-toggle-split, 484

ediff-toggle-wide-display,
485

ediff-update-diffs, 485

ediff-windows-linewise, 483

ediff-windows-wordwise, 483

ediff3, 483

edit-abbrevs-redefine, 318

edit-kbd-macro, 265

edit-tab-stops, 338

editing, indirect, 228, 239

EDITOR environment variable,
366

EIPNIF, 187

elfeed, 505, 506

Elisp syntax, 412

Elliott, James, 582

Emacs Wiki, 425

emacs-lisp-mode, 144, 411, 419

emacs-uptime, 136

emacs-uptime, 370

EmacsConf, 426

email
Email

sending, 497

Email, 497

email, encrypted, 539

email, signed, 539

emms, 494

emms-add-directory-tree, 494

enable-recursive-

minibuffers, 117

encryption, asymmetric, 533

encryption, file, 189, 407

encryption, public-key, 533

encryption, symmetric, 533

end-of-buffer, 84

end-of-defun, 87

Environment variable,
EDITOR, 366

EPA (EasyPG Assistant), 533

epa-decrypt-armor-in-

region, 536

epa-decrypt-region, 536

epa-dired-do-decrypt, 539

epa-dired-do-encrypt, 539

epa-dired-do-sign, 539

epa-dired-do-verify, 539

epa-encrypt-file, 534

epa-encrypt-region, 536

epa-export-keys, 538

epa-import-keys, 538

epa-list-keys, 537

epa-list-secret-keys, 538

epa-search-keys, 538

epa-sign-file, 537

epa-sign-region, 537

epa-verify-region, 537

epg-pinentry-mode, 539

Ephmeris, 461

EPUB file, 191

eshell, 445

eval, file-local pseudo-variable,
403

eval-expression, 262, 421

eval-region, 122

evil-mode, 434

eww, 117, 425, 448, 451

EWW, 447

EWW, reload web page, 453

eww-add-bookmark, 452

eww-back-url, 451, 452

eww-browse-url, 455

eww-browse-with-external-

browser, 451

604 keith waclena

eww-copy-page-url, 451

eww-download, 451

eww-download-directory, 451

eww-follow-link, 451

eww-forward-url, 452

eww-list-bookmarks, 449, 452

eww-list-buffers, 452

eww-list-histories, 452

eww-next-bookmark, 452

eww-next-url, 452

eww-open-file, 449

eww-open-in-new-buffer, 452

eww-previous-bookmark, 452

eww-previous-url, 452

eww-readable, 451

eww-reload, 448, 453

eww-restore-desktop, 448

eww-search-prefix, 449

eww-search-words, 448

eww-set-character-encoding,
449

eww-switch-to-buffer, 452

eww-toggle-colors, 449

eww-toggle-fonts, 449

eww-toggle-images, 449

eww-toggle-paragraph-

direction, 449

eww-top-url, 452

eww-up-url, 452

eww-view-source, 453

exchange-point-and-mark, 67,
72, 87, 222, 306

execute-extended-command,
93, 118, 252, 266, 444

exit-recursive-edit, 322

exit-recursive-edit, 232

expressions, regular (regexps),
245

Eydelnant, Joseph, 343

F, 449, 525

f, 109, 474, 525

Faces, 323

FAQ, 425

feed reader, 505

feed, news, 505

Felicity, 56, 132, 157, 160, 166,
325

ffap, 372

ffap-bindings, 183

ffap-menu, 183

fido-mode, 124

file manager, 199

file, archive, 190

file, authentication, 407

file, compression, 189

file, directory, 199

file, document, 191

file, DVI, 191

file, encryption, 189, 407

file, EPUB, 191

file, image, 194

file, Microsoft Office, 191

file, netrc, 407

file, OpenDocument, 190, 191

file, PDF, 191

file, PostScript, 191

file, tar, 190

file, zip, 190

file-local variables, 97

file-local variables, safety, 404

file-local variables, security of,
403

FILENAME , 186

FILENAME 1 , 186

files, auto-save, 186

files, backup, 186

files, backup, numbered, 186

files, binary data, 195

files, bzip2, 189

files, checkpoint, 186

files, conflicts, 188

files, gzip, 189

files, lock, 187

files, modified on disk, 185,
188

Files, restoring, 286

fill-column, 103

use gnu emacs the plain text computing environment 605

fill-region, 68

find-alternate-file, 181, 361

find-dired, 216

find-file, 60

find-file, 62, 117, 119, 122,
134, 181, 199, 289, 303,
355, 440, 471

find-file-at-point, 183, 437,
449, 455

find-file-existing, 181

find-file-existing, 182

find-file-literally, 182, 183

find-file-other-frame, 182,
365

find-file-other-window, 182

find-file-read-only, 181

find-file-read-only, 184

find-file-read-only-other-

frame, 182

find-file-read-only-other-

window, 182

find-name-dired, 216

finder-by-keyword, 100

finder-by-keyword, 276

Finkel, Raphael A., 590

Finseth, Craig A., 582

flush-lines, 331

flyspell-incorrect, 93

flyspell-mode, 146, 150, 415

flyspell-prog-mode, 97, 148

folding of text, 341

folding of text, markup-based,
341, 376

folding text, implicit, 341

follow-mode, 167

Font, default, 324

font-lock-mode, 327

Fonts, 323

foreign languages, 347

fortune, 551

forward-char, 81, 256

forward-char, 129, 161, 253,
306

forward-page, 84

forward-paragraph, 83

forward-sentence, 83

forward-sexp, 85

forward-word, 81

forward-word, 50, 78, 222

frameset-to-register, 180,
301, 303

Free Software Foundation, 37,
47, 426, 582–586

Frequently Asked Questions,
425

Friedl, Jeffrey E. F., 585

FSF, 37, 47, 426

fundamental-mode, 133, 147,
182, 194, 200, 335

G, 451

g, 448, 525

Gildea, Stephen, 588

Gillespie, Dave, 585

Github, Emacs Lisp code on,
426

Glickstein, Bob, 585

global-goto-address-mode,
456

global-linum-mode, 149, 334

global-set-key, 416

global-so-long-mode, 184

global-tab-line-mode, 133

GNU Privacy Guard, 189

GNU project, 425

gnugo, 549

GnuPG, 189

Gnus, 499, 505, 539

gomoku, 549

Goodfellow, Geoffrey S., 590

goto-address-at-point, 456

goto-address-mode, 456

goto-address-prog-mode, 456

goto-char, 92, 418

goto-line, 92, 418, 421

Graham, Paul, 585

Greenberg, Bernie, 565

grep, 209, 239, 356, 442

606 keith waclena

grep-files-aliases, 241

grep-find, 241

grep-mode, 169, 477

grep-template, 243

Guerry, Bastien, 585

gzip, 189

H, 452

h, 485, 489

hanoi, 550

header-line-format, 167

help-mode, 100, 134

help-with-tutorial, 100

hexl-find-file, 196

hexl-mode, 196

hi-lock-mode, 327

Hideshow Minor Mode, 342

highlight-lines-matching-

regexp, 328

highlight-phrase, 328

highlight-regexp, 328

highlight-symbol-at-point,
253, 328

Hinman, Lee, 586

hl-line-mode, 326

holidays, 461

Holidays, 461

horizontal-scroll-bar-mode,
179

Hoyte, Doug, 586

HTML, 377

HTML, converting to, 396

htmlize-buffer, 396

htmlize-file, 396

htmlize-many-files, 396

htmlize-many-files-dired,
396

htmlize-region, 396

htmlize-region-save-

screenshot, 396

htop(1), 523

hyperlinks, Org Mode, 385

I, 110

i, 110, 422, 451

ibuffer, 137, 139

icomplete-mode, 124

ido-mode, 124

ielm, 436

image file, 194

image-dired-dired-display-

external, 215

image-dired-dired-display-

image, 214

image-dired-dired-toggle-

marked-thumbs, 214

image-mode, 194

image-mode-copy-file-name-

as-kill, 195

image-mode-mark-file, 195

image-next-file, 194

image-previous-file, 194

image-toggle-display, 194

image-toggle-hex-display,
194

images, 194

images, browsing, 194

images, resizing, 195

images, scaling, 195

implicit folding of text, 341

increment-register, 301, 302

indent-for-tab-command, 335,
338

indent-region, 337

indent-rigidly, 67

indent-rigidly, 337

indent-tabs-mode, 415

indicate-empty-lines, 103

indirect editing, 228, 239

info-apropos, 110

Info-directory, 111

info-display-manual, 107

info-emacs-manual, 100

Info-follow-reference, 109

Info-goto-emacs-command-

node, 107

Info-goto-emacs-key-

command-node, 107

use gnu emacs the plain text computing environment 607

Info-help, 108

Info-history, 109

Info-history-back, 109

Info-history-forward, 109

Info-index, 110, 422

Info-menu, 109

Info-next, 109

Info-prev, 109

Info-scroll-up, 108

Info-top-node, 111

Info-virtual-index, 110

Ingebrigtsen, Lars Magne, 5,
447, 499, 500, 506, 586

init file, 411

Init file, 76, 117, 119, 122, 124,
133, 145, 146, 150, 156,
160, 164, 166, 179, 184,
192, 200, 209, 212, 222,
224, 254, 273, 277, 299,
311, 318, 324, 326, 327,
435, 441, 494, 502, 570, 575

init file, shell, 442

input method, 350

input method, transient, 351

input methods, 348

insert-buffer, 75

insert-char, 349

insert-file, 252, 312

insert-kbd-macro, 266

insert-register, 301, 302

international character sets,
347

Internet Relay Chat, Emacs on,
426

interpreter-mode-alist, 143

inverse-add-global-abbrev,
316

inverse-add-mode-abbrev, 316

IRC, Emacs on, 426

isearch-allow-scroll, 222

isearch-backward, 116, 223,
439

isearch-backward-regexp,
116, 225

isearch-delete-char, 221

isearch-forward, 110, 193,
220, 245, 494

isearch-forward-regexp, 225

isearch-forward-word, 224,
231

ISO-2022, 347

ispell-minor-mode, 146

jka-compr-compression-info-

list, 189

join-line, 336

jump-to-register, 157, 301,
303

just-one-space, 335

k, 524, 526

Kaludercic, Philip, 586

kbd-macro-query, 262

keep-lines, 331

keyboard-quit, 53, 70, 117,
222, 253, 257, 258, 306,
325, 391, 433, 499

kill-buffer, 61

kill-buffer, 136, 152, 181,
185, 440

kill-buffer-and-window, 136

kill-line, 82, 262

kill-line, 49

kill-matching-buffers, 137

kill-matching-lines, 331

kill-paragraph, 83

kill-rectangle, 306, 307

kill-region, 67

kill-region, 252, 306

kill-ring-save, 67

kill-ring-save, 152, 306

kill-sentence, 83

kill-sexp, 86

kill-some-buffers, 137

kill-word, 81

kmacro-bind-to-key, 266, 303

kmacro-cycle-ring-next, 262

608 keith waclena

kmacro-cycle-ring-previous,
262

kmacro-delete-ring-head, 262

kmacro-edit-lossage, 258, 265

kmacro-edit-macro-repeat,
264

kmacro-end-and-call-macro,
257

kmacro-name-last-macro, 266

kmacro-ring-max, 262

kmacro-set-counter, 263

kmacro-set-format, 264

kmacro-step-edit-macro, 265

kmacro-to-register, 303

kmacro-view-macro-repeat,
262

kmark-insert, 311

Knuth, Donald, 389

Knuth, Donald E., 586

Krawitz, Robert, 586

Krehel, Oleh, 591

Kremer, Sebastian, 586

L, 109

l, 109, 451, 452

LaLiberte, Dan, 586

Lang, Mario, 5

language environments, 348

large-file-warning-

threshold, 183

Larus, Jim, 588

LaTeX, 377

left-char, 81

Levy, Steven, 586

Lewis, Bil, 586

lgrep, 209, 240

life, 550

Lines, numbering of, 334

Lines, reversing order or, 334

Lines, sorting, 332

linum-mode, 91, 128, 149, 164,
165, 168, 334, 416

list-abbrevs, 318

list-buffers, 61

list-buffers, 136–138, 167

list-colors-display, 151,
326, 419

list-command-history, 119

list-command-history-max,
119

list-directory, 199

list-faces-display, 323

list-holidays, 461

list-input-methods, 348

list-packages, 277

list-processes, 435, 523

list-registers, 302

literate programming, 389

load-library, 282

load-path, 279

locale, 348

locale-coding-system, 413

locate, 217

locate-with-filter, 217

lock files, 187

log-edit-done, 471

log-edit-kill-buffer, 471

log-view-find-revision, 474

Loy, Marc, 582

lpr-buffer, 395

lpr-command, 397

lpr-page-header-program, 395

lpr-region, 395

lpr-switches, 397

lunar-phases, 461, 462

m, 109, 485, 525

M-’, 318

M-/, 125, 295, 297

M-:, 262, 421

M-<, 84

M-<, 231, 490

M->, 84

M-%, 208, 210, 228, 231, 252, 335

M-&, 434

M-ˆ, 336

M-\, 335

M-{, 83

use gnu emacs the plain text computing environment 609

M-}, 83

M-˜, 184

M-a, 83

M-a, 54

M-b, 81

M-b, 306

M-C, 449

M-c, 265

M-c, 338

M-d, 81

M-DEL, 81

M-DEL, 252

M-e, 83

M-f, 81

M-f, 78, 222

M-g c, 92, 418

M-g g, 92

M-g M-g, 418

M-g M-n, 239

M-g TAB, 92

M-h, 83

M-h, 89, 433

M-I, 449

M-k, 83

M-l, 208

M-l, 338

M-m, 337

M-n, 116, 438, 452

M-p, 116, 118, 438, 452

M-q, 68

M-r, 118, 163, 439

M-RET, 452

M-SPC, 335

M-s h ., 253, 328

M-s h l, 328

M-s h p, 328

M-s h r, 328

M-s h u, 329

M-s M-<, 223, 229

M-s M->, 223, 229

M-s M-w, 448

M-s o, 227

M-t, 81, 256

M-t, 252

M-TAB, 298

M-u, 256

M-u, 338

M-v, 64

M-v, 161, 222

M-w, 67

M-w, 152, 306

M-x, 93, 115, 116, 118, 252, 266,
421

M-y, 71

M-=, 460

magic-fallback-mode-alist,
143

magic-mode-alist, 143

mail
Mail

sending, 497

Mail, 497

mail, encrypted, 539

mail, signed, 539

Mailing lists, Emacs-related,
425

major-mode, 143

make-directory, 182

make-frame-command, 178

make-frame-on-monitor, 179

make-variable-buffer-local,
334

manual-entry, 211, 442

mark-beginning-of-buffer, 85

mark-defun, 87

mark-end-of-buffer, 85

mark-end-of-sentence, 83

mark-end-of-sentence, 80

mark-page, 84

mark-paragraph, 83

mark-paragraph, 89, 433

mark-sexp, 86

mark-whole-buffer, 85

mark-whole-buffer, 252, 536

mark-word, 81

Markdown, 376

markup-based folding of text,
341, 376

610 keith waclena

max-mini-window-height, 432

McIlroy, M.D., 587

Mendler, Daniel, 587

menu-bar-mode, 179

menu-set-font, 324

message, 404

message-log-max, 113

message-mode, 498

message-send-and-exit, 282,
499

metaprogramming, Org Mode,
391

Microsoft Office file, 191

midnight-mode, 370

MobileOrg, 392

mode-line-format, 171

Monnier, Stefan, 587

Moon, Dave, 565

morse-region, 550

mouse-drag-region-

rectangle, 306

move-beginning-of-defun, 87

move-beginning-of-line, 82

move-end-of-line, 82

move-end-of-line, 24

move-to-column, 92

move-to-window-line-top-

bottom, 163

mpc, 495

mpuz, 550

multi-isearch-files, 210

multi-occur, 229

multi-occur-in-matching-

buffers, 228

Murphy, Dan, 587

n, 109, 452

narrow-to-region, 139, 140

Neidhardt, Pierre, 445

Nelson, Russ, 566

netrc file, 407

newline, 336

news feed, 505

news groups, Usenet, 499

news, Usenet, 499

newsreader, 499

Newsticker, 506

newsticker, 505

newsticker-show-news, 506

newsticker-treeview-browse-

url, 506

next-buffer, 132

next-buffer, 132, 137

next-error, 227, 239, 289, 366

next-error-follow-minor-

mode, 169

next-history-element, 116,
213

next-line, 82

next-line, 162, 165, 168, 238,
306, 308

NNTP, 499

normal-mode, 144

not-modified, 184

number-to-register, 301

numbered backup files, 186

Numbering of lines, 334

o, 525, 526, 538

occur, 110, 219, 226, 227, 437,
494

occur-cease-edit, 228

occur-mode, 169, 327

open-line, 309, 336

open-rectangle, 306

OpenDocument file, 190, 191

Org Mode, 375, 406

Org Mode, agenda, 385

Org Mode, archiving, 385

Org Mode, attachments, 385

Org Mode, Babel, 389

Org Mode, capture, 373

Org Mode, drawers, 385

Org Mode, hyperlinks, 385

Org Mode, metaprogramming,
391

Org Mode, refiling, 385

use gnu emacs the plain text computing environment 611

Org Mode, reproducible
research, 392

Org Mode, security, 391

Org Mode, source blocks, 389

Org Mode, spreadsheet, 388

Org Mode, tags, 384

Org Mode, timestamps, 386

Org Mode, TODOs, 387

org-archive-subtree, 385

org-babel-tangle-file, 389

org-confirm-babel-evaluate,
391

org-cycle, 377

org-eww-copy-for-org-mode,
453

org-mode, 144, 145, 189, 192,
375

org-refile, 385

org-shifttab, 377

org-time-stamp, 386

org-todo, 387

org-web, 392

organice, 392

Orgzly, 392

other-frame, 178

other-window, 63, 131

other-window, 100, 118, 155,
178

outline, markup, 376, 555

outline-mode, 148, 375

overwrite-mode, 196

P, 395, 489

p, 109, 452

package manager, 275

Package menu, 277

package signatures, 406

package-archive-priorities,
276

package-check-signature, 406

package-install, 277

package-menu-clear-filter,
277

package-menu-execute, 278

package-menu-filter-by-

keyword, 277

package-menu-filter-by-

name, 277

package-menu-mark-upgrades,
278

package-menu-mode, 327

packages, third-party, security
of, 405

pandoc, 392

passwords, 407, 533

pattern matching, 245

Patti, Chris, 411

PDF file, 191

Pereira, Murilo, 587

Petersen, Mickey, 587

Pflaumenbaum, Der, 480

Philosophy, Unix, 568

Pinson, E.N., 587

Podcasts, Emacs-related, 426

point-max, 423

point-min, 423

point-to-register, 301, 302

pop-global-mark, 90, 132

Post, Ed, 588

PostScript file, 191

Postscript, converting to, 396

Postscript, printing, 396

Poundstone, William, 588

Prefix Command, 472

prepend-to-register, 302

previous-buffer, 132

previous-buffer, 132, 137

previous-history-element,
116

previous-line, 82

previous-line, 162, 165, 238

print-buffer, 395

print-region, 395

printer-name, 397

printing, 395

printing, plain, 395

printing, PostScript, 396

proced, 523

612 keith waclena

Proced (process viewer), 523

proced-filter-interactive,
524, 525

proced-format-interactive,
524, 525

proced-mark, 524, 525

proced-mark-all, 524

proced-mark-children, 524,
525

proced-mark-parents, 524

proced-omit-processes,
524–526

proced-refine, 524

proced-renice, 524, 526

proced-send-signal, 524, 526

proced-sort-interactive, 524

proced-sort-pcpu, 524

proced-sort-pid, 524

proced-sort-pmem, 524

proced-sort-start, 524

proced-sort-time, 524

proced-sort-user, 524

proced-toggle-auto-update,
525

proced-toggle-marks, 524, 526

proced-toggle-tree, 524

proced-undo, 524

proced-unmark, 524, 525

proced-unmark-all, 524

proced-unmark-backward, 524

process viewer (Proced), 523

processes, system, 523

prog-mode, 318

Project GNU, 425

project-shell, 441

project-vc-dir, 476

ps-despool, 396

ps-print-buffer, 396

ps-print-buffer-with=faces,
396

ps-print-region, 396

ps-print-region-with=faces,
396

ps-spool-buffer, 396

ps-spool-buffer-with=faces,
396

ps-spool-region, 396

ps-spool-region-with=faces,
396

public-key cryptography, 533

pwd, 135, 355, 357

python-indent-offset, 405

python-mode, 142, 342, 405

python-mode-hook, 97

Q, 255

q, 418, 486, 487

query-replace, 208, 210, 228,
231, 252, 255, 335

query-replace-regexp,
206–208, 226, 233, 255

quit-window, 524

quoted-insert, 130, 317, 335

R, 451

r, 109, 452, 526

random, 420, 422

Raymond, Eric S„ 588

Raymond, Eric S., 582, 588

read-only-mode, 62

read-only-mode, 181

recenter-positions, 163

recenter-top-bottom, 163, 222

recover-file, 187

recover-session, 187

rectangle-exchange-point-

and-mark, 306

rectangle-mark-mode, 306

rectangle-number-lines, 263

rectangle-number-lines, 306,
334

Rectangles, 305

Rectangular region, 305

Recursive edit, 321

recursive-edit, 322

refiling, Org Mode, 385

regexps (regular expression),
245

use gnu emacs the plain text computing environment 613

region-rectangle, 305

Registers, 301

regular expressions (regexps),
245

Reid, Brian, 588

Reingold, Edward M., 588

Reload EWW web page, 453

Remember, 371

remember, 371–373

remember-clipboard, 373

remember-destroy, 371

remember-finalize, 371

remember-mode, 371

remember-notes, 372

rename-buffer, 134

rename-file, 136

rename-uniquely, 134

repeat-complex-command, 118

replace-regexp, 236

replace-string, 236

report-emacs-bug, 94, 282

reposition-window, 163

reproducible research, Org
Mode, 392

repunctuate-sentences, 570

resizing images, 195

Restoring files, 286

RET, 336, 451

reverse-region, 334

Reversing the order of lines,
334

revert-buffer, 136, 185, 188,
192, 211, 361, 474, 524, 525

revert-buffer-quick, 136, 185

revert-buffer-with-coding-

system, 352

reverting buffers, 185

Reverting, EWW, 453

rgrep, 118, 209, 241

right-char, 81, 161

Ritchie, Dennis, 589

rmail-mode, 502

Rosenblatt, Bill, 582

rot13-region, 550

RSS (web syndication), 505

rzgrep, 241

S, 277, 452

s, 452

S-TAB, 377, 451

save-buffer, 60

save-buffer, 151, 184

save-buffers-kill-emacs,
369, 417

save-buffers-kill-terminal,
178, 285, 369, 571

save-place-mode, 311

save-some-buffers, 61

save-some-buffers, 184, 285,
286, 319

save-some-buffers-default-

predicate, 133

scaling images, 195

Schulte, Eric, 589

Screencasts, Emacs-related,
426

scripts (writing systems), 347

scroll-all-mode, 169

scroll-bar-mode, 179

scroll-down, 64

scroll-down-command, 102, 222

scroll-left, 56, 166

scroll-other-window, 64

scroll-other-window, 100

scroll-right, 166

scroll-up, 64

scroll-up-command, 102, 222

secrets, 533

Secrets API, 407

security, 403

security, of directory-local
variables, 403

security, of file-local variables,
403

security, Org Mode, 391

self-insert-command, 49, 50

Selk, Avi, 570, 589

614 keith waclena

sentence-end-double-space,
83, 570

server-edit, 364

server-edit-abort, 364

server-force-delete, 369

server-start, 368

set-frame-font, 324

set-mark-command, 66, 89, 222

set-selective-display, 344

set-variable, 95, 98, 403

setq, 413

setq-default, 415

shell, 134

shell, 134, 356, 358, 437, 442,
445, 469, 531

shell init file, 442

shell-command, 199, 252, 431,
469

shell-command-on-region, 433

shell-file-name, 431, 442

shell-mode, 437, 442, 443

shell-prompt-pattern, 357

shr-browse-image, 451

shr-next-link, 451

shr-previous-link, 451

shr-use-colors, 449

shr-use-fonts, 449

shrink-window-if-larger-

than-buffer, 160

signatures, cryptographic, 406

signatures, package, 406

size-indication-mode, 175

slideshow presentations, 389

so-long-mode, 184

solitaire, 549

sort-columns, 333

sort-fields, 332

sort-fold-case, 334

sort-lines, 332

sort-numeric-fields, 332

Sorting lines, 332

source blocks, Org Mode, 389

SPC, 108

special-mode, 152, 203, 453

Sperber, Michael, 587

split-line, 336

split-window-below, 62

split-window-below, 154, 169,
253

split-window-right, 62

split-window-right, 63, 154,
164, 167

spreadsheet, Org Mode, 388

Stallman, Richard M., 586, 589,
590

Stallman, Richard M. (rms),
566

Steele, Guy L., 588

Steele, Guy L., Jr, 565

Steele, Guy L., Jr., 590

Stephenson, Neal, 5, 590

string-rectangle, 306

Sunrise, time of, 461

sunrise-sunset, 461

Sunset, time of, 461

suspend-frame, 417

Sussman, Gerald Jay, 581

Sussman, Julie, 581

switch-to-buffer, 61

switch-to-buffer, 62, 113,
116, 119, 122, 123, 131,
133, 137, 144, 151

switch-to-buffer-other-

frame, 132

switch-to-buffer-other-

window, 131

switch-to-prev-buffer-skip,
132

symmetric encryption, 533

syndication, web, 505

syntax, Elisp, 412

system monitor, 523

system processes, 523

s b, 194

s m, 194

s r, 194

T, 525

use gnu emacs the plain text computing environment 615

t, 111, 452, 526

TAB, 337, 338, 377, 451

Tab Bar, 158

tab-bar-mode, 158

tab-line-mode, 133

tab-new, 158

tab-width, 338

tabify, 338

table-capture, 340

tabulated-list-mode, 524

tabulated-list-sort, 277

tags, Org Mode, 384

tags-query-replace, 233

Tague, B.A., 587

tar file, 190

tar-extract, 191

tar-mode, 191

TECO, 403

term, 443

term-char-mode, 444

term-line-mode, 444

tetris, 118

TeX, 377

text-mode, 147, 318, 337, 415

text-mode-hook, 415

text-scale-adjust, 325

text-scale-mode-step, 325

Themes, 325

third-party packages, security
of, 405

Thompson, Silvanus P., 411,
590

timestamps, Org Mode, 386

timeclock-change, 466

timeclock-file, 466

timeclock-in, 466

timeclock-out, 466

TODOs, Org Mode, 387

toggle-horizontal-scroll-

bar, 166

toggle-indicate-empty-

lines, 167

toggle-truncate-lines, 165

tool-bar-mode, 179

tooltip-mode, 179

top(1), 523

top-level, 322

top-level, 370

TRAC, 566

tramp-cleanup-all-buffers,
361

tramp-cleanup-connection,
361

tramp-default-method, 356

transient input method, 351

transpose-chars, 81

transpose-lines, 82

transpose-paragraphs, 80

transpose-sentences, 80

transpose-words, 81, 256

transpose-words, 252

Troff, 377

truncate-lines, 103, 164

Typeface, 323

U, 278

u, 452, 525

ubiquitous capture, 371, 392

Umeda, Masanobu, 500

undo, 251

undo-outer-limit, 252

undo-tree, 254

unexpand-abbrev, 317

unhighlight-regexp, 329

Unicode, 347

universal-argument, 205

Unix Philosophy, 568

unmorse-region, 550

untabify, 335, 338

upcase-region, 67, 433

upcase-region, 252, 306, 338

upcase-word, 256

upcase-word, 338

url-cookie-list, 453

use-dialog-box, 179, 413

use-file-dialog, 179, 413

Usenet news, 499

616 keith waclena

user-emacs-directory, 215,
277, 372

v, 453, 506

Van Dyke, Neil, 581

variables, directory-local, 97

variables, directory-local,
security of, 403

variables, file-local, 97

variables, file-local, security of,
403

vc-annotate, 472

vc-create-tag, 472

vc-delete-file, 472

vc-diff, 472, 479

vc-diff-mergebase, 472

vc-dir, 470, 472, 476

vc-dir-mode, 470, 477

vc-ediff, 473

vc-git-grep, 477

vc-ignore, 472

vc-log-incoming, 472

vc-log-mergebase, 472

vc-log-outgoing, 472

vc-make-backup-files, 186

vc-merge, 472

vc-next-action, 470, 472

vc-print-log, 466, 472

vc-print-root-log, 472

vc-push, 472

vc-region-history, 472

vc-register, 472, 473

vc-rename-file, 472

vc-retrieve-tag, 472

vc-revert, 472

vc-revision-other-window,
472

vc-root-diff, 472, 479

vc-switch-backend, 472

vc-update, 472

vc-update-change-log, 472

Videos, Emacs-related, 426

view-echo-area-messages, 113

view-emacs-FAQ, 425

view-emacs-news, 281

view-hello-file, 348

view-lossage, 114

view-mode, 184, 185, 192, 195,
434

view-read-only, 184

view-register, 302

View-revert-buffer-scroll-

page-forward, 185

visible-bell, 94

Visual display, 323

visual-line-mode, 166

w, 451

Walters, Colin, 73

War and Peace, 441

Web browser, 447

Web page, reload, 453

Web sites, Emacs-related, 426

web syndication, 505

Weinreb, Dan, 565

Wellons, Christopher, 506

Welty, Chris, 586

what-cursor-position, 65, 139

what-line, 91

where-is, 99

where-is, 101, 416

whitespace-mode, 329

whitespace-toggle-options,
329

Whitman, Walt, 5

widen, 140

Wiegley, John, 445, 590

Wiersdorf, Ashton, 555

Wiki, Emacs, 425

window-configuration-to-

register, 157, 179, 301,
303

winner-redo, 157

winner-undo, 157

Wohler, Bill, 588

Wood, Randall, 590

Woods, Donald R., 590

world-clock, 414, 465

use gnu emacs the plain text computing environment 617

world-clock-list, 414

write-file, 133, 184, 440, 487

writing systems (scripts), 347

x, 278, 489

XML, 377

xref-query-replace-in-

results, 233

yafolding-toggle-all, 343

yafolding-toggle-element,
343

yank, 301

yank-pop, 71

yank-rectangle, 306–308

Yegge, Steve, 255

Zawinski, Jamie, 245, 591

Zeng, Zeno, 343

Zeno Zeng, 343

zip file, 190

zone, 550, 551

zsh, 442

/ /, 277

Colophon

The version number of this book is 28.2.133; the first two components
are the major and minor components of the version number of the
Emacs which was used to publish the book, and the third component
is the patch-level of the book.

This book is written in and published from GNU Emacs. The
text consists of 21,926 lines of Org Mode markup, which, with some
helpers, generates all three published versions of the book:

• the PDF version is compiled by Emacs from Org to LATEX and
then typeset with the tufte-latex classes (inspired by the beautiful
typography of Edward Tufte);

• the HTML version (which uses Fabrice Niessen’s ReadTheOrg) is
compiled by Emacs from Org;

• and the EPUB ebook is compiled by Emacs from Org via Mark
Meyer’s ox-epub.

Org Mode’s multi-language metaprogramming facility, Babel, is
used heavily to automate indexing, hypertext links to the web version
of the Emacs manuals, and the many bits of statistical information in
the book. The original 1997 version of this book (written in HTML
preprocessed by the GNU m4 macro processor) was soon plagued
by broken web links and obsolete claims about Emacs; with Babel,
all these things are computed automatically every time the docu-
ment is updated, so the useful lifetime of this new edition should be
considerably lengthened.

There are 1,705 lines of Babel code in 7 languages (emacs-lisp,
gnuplot, shell, dot, ditaa, python, org), supported by 763 more lines
of custom Emacs Lisp code.

Everywhere in this book that you see very precise numbers (e.g.,
“1,705 lines of Babel code”, “395,759 lines of hypertext reference
manuals”), those numbers are probably computed by Babel code
during publication. (Nice round numbers (e.g. “30,000 lines of Magit
source code”) are probably looked up or hand-estimated.)

Graphviz and Ditaa were used for some of the diagrams.

https://www.ctan.org/pkg/tufte-latex
https://www.edwardtufte.com/tufte/
http://www.pirilampo.org/
https://github.com/fniessen/org-html-themes#readtheorg
https://github.com/ofosos/org-epub
https://en.wikipedia.org/wiki/Metaprogramming
https://orgmode.org/worg/org-contrib/babel/intro.html
https://www.gnu.org/software/m4/
https://www.graphviz.org/
https://github.com/stathissideris/ditaa

620 keith waclena

The bibliographic data is maintained in Refer format and the bibli-
ography is generated by code in my refer-mode package.

Version control is handled by Mercurial via Emacs’s VC (“Version
Control” in the Emacs manual).

The publication process is orchestrated by GNU Make and M-x

compile.
The RSS feed is generated by Bastien Guerry’s ox-rss.
Previews of the HTML version are made easy by Christopher

Wellons’s 100% Elisp simple-httpd web server.
It takes about three minutes to regenerate any of the versions of

this 625 page book after an edit.

https://en.wikipedia.org/wiki/Refer_(software)
https://www.lib.uchicago.edu/keith/software/emacs/
https://www.mercurial-scm.org/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Version-Control
https://www.gnu.org/software/emacs/manual/html_node/emacs/Version-Control
https://www.gnu.org/software/make
https://www.gnu.org/software/emacs/manual/html_node/emacs/Compilation
https://www.lib.uchicago.edu/keith/emacs/feed.xml
https://github.com/benedicthw/ox-rss.git

Photo and Illustration Credits

Author License Description
Fernandes, Luis GPL GNU Emacs Logo
Haldir Public Domain Emacs + AUCTeX
Man with one red shoe CC BY-SA 3.0 Photo of Richard M. Stallman
Nzeemin CC BY-SA 3.0 Ukrainian keyboard
Ruban, George CC BY-SA 4.0 Photo of Guy L. Steele
Vi-alt13ri CC BY-SA 4.0 Photo of David A. Moon

Table 71: Photo and Illustration Credits

Licenses URL
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/

CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/

GPL http://www.gnu.org/licenses/gpl.html

Table 72: Licenses

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://www.gnu.org/licenses/gpl.html

Acknowledgments

I’d like to thank Dave Moon and Guy Steele for inventing Emacs,
Richard Stallman for maintaining it and then creating GNU Emacs,
Lars Ingebrigtsen for Gnus, Carsten Dominik for Org, and all the
dedicated maintainers of and contributors to GNU Emacs.

Closer to home, I’d like to thank Matt Teichman and Elisabeth
Long for encouraging me to write this book, and especially Ann
Lindsey for being my Emacs games beta tester and for everything
else.

About the Author

Keith Waclena used the TECO programming language for his first
paid programming job on a DECsystem-10 at Syracuse University
in 1979, and discovered the original TECO Emacs shortly thereafter.
Amazed and besotted, he tried to use only Emacs or at worst Emacs-
like editors from that point on, continuing to use TECO Emacs on
DECSYSTEM-20’s at the University of Chicago, MINCE on a Z80 run-
ning ZCPR3, Freemacs on a borrowed 286 running MS-DOS, Gosling
and Unipress Emacs on a Sun 3/60 and NeXT cube, and finally GNU
Emacs (with temporary excursions into Epoch and XEmacs) on ev-
ery computer since (whether under SunOS, BSD, System V, Solaris,
NetBSD, FreeBSD, Mac OS X, MS Windows, ChromeOS, or Linux).
He’s been using Emacs daily for 44 years, and even after writing this
book, feels like he’s only scratched the surface.

He is currently a programmer at the University of Chicago Library,
coding mostly in OCaml for work purposes but mostly in Emacs Lisp
for personal projects.

https://ocaml.org/

	I FUNDAMENTALS
	Introduction
	What GNU Emacs Is
	What GNU Emacs Is Not

	Emacs as Operating System
	Quickstart
	Installing Emacs
	Starting Up and Running Emacs
	Entering Emacs
	Exiting Emacs
	What Emacs Looks Like
	Using Emacs Like It's Notepad?
	Configuring Emacs
	The Built-In Emacs Tutorial

	The Fundamental Emacs Concepts
	Functions
	The Keyboard and Key Bindings
	Variables
	Discovery, Help and Completion
	Buffers
	Plain Text
	Windows
	Search
	Undo and Redo
	Major and Minor Modes
	Customization
	Programmabililty
	Free Software

	The Keyboard and Key Bindings
	Notation
	Simple Keys
	Prefix or Compound Keys
	Aborting a Command
	Using Extended Commands
	Too Many Commands?
	Giving Commands Arguments
	Disabled Commands
	Felicity in Key Bindings
	About Mouse Bindings

	Files, Buffers and Windows in Brief
	 Basic File Concepts and Commands
	Basic Commands to Manipulate Buffers
	Basic Commands to Manipulate Windows

	Selecting Text: the Point, the Mark, and the Region
	The Point
	The Mark
	The Region

	Cutting, Copying, and Pasting
	Welcome back!
	The Kill Ring
	Yanking Older Kills (``Clipboard History'')
	Undoing a Yank
	I Can't Picture This!
	Other Ways to Set the Region
	Appending to a Kill
	Appending to a Buffer
	The Clipboard
	CUA Mode

	Editing with Textual Objects
	 Shift Selection
	Transposing and Dragging Objects
	Characters, Words, and Lines
	Prose Objects: Sentences and Paragraphs
	Larger Objects: Pages and Buffers
	 Code Objects: Balanced Parentheses and Function Definitions
	Extending Kills
	Adjusting the Region

	Other Ways to Move Around
	Move by Searching
	 Follow a Breadcrumb Trail (The Mark Ring)
	Move Via Your History of Changes
	Mode-specific Motion
	Move by Scrolling
	Goto Commands

	Variables and Symbols
	What Are These Variables For?
	Types of Variable Values
	Inspecting Variables
	Changing the Value of a Variable
	Buffer-Local Variables

	Help, Discovery, and Documentation
	Help
	Discoverability via Apropos
	Additional Information

	Info: The Emacs Documentation Reader
	Hyperlinks
	Menus
	Searching
	Indexes
	Higher-Level Navigation
	Write Your Own Manual

	Messages, Errors, and Lossage
	Messages
	What Just Happened?

	The Minibuffer
	Minibuffer History
	 Future History
	Recursive Minibuffers
	Temporary Excursions
	Repeating Complex Commands
	An Aside Concerning Completion Frameworks

	Completion
	A Shortcut to Completion
	Done!
	Complementary Packages
	Other Incremental Narrowing Frameworks
	Completion in Normal Buffers
	References

	What is Text?
	The Structure of Text
	What Isn't Text?
	Inserting Non-Printing Characters

	Buffers
	Switching Buffers
	The Tab Line
	Creating Buffers
	To Save or Not to Save
	Buffer Names
	The Default Directory
	Reverting Buffers
	Killing Buffers
	Buffer Menus
	Narrowing

	Modes, Major and Minor
	How a Mode Happens to Your File
	Setting the Mode Explicitly
	Help for Your Mode
	Customizing Modes
	Derived Modes and Inheritance
	Basic Major Modes
	Programming Language Modes
	Application Modes
	Minor Modes

	Application Buffers
	Windows
	Splitting Windows
	Deleting Windows
	Switching Windows
	Window Configurations
	The Tab Bar
	Tweaking Window Sizes
	Vertical Scrolling
	Where in the Window is Point?
	The Display of Lines
	The Header Line
	The Fringes
	Follow Mode
	Scrolling Many Different Buffers at Once

	The Mode Line in Detail
	C — Coding Systems
	E — End-of-Line Encodings
	F — Client Frame Indicator
	B — Buffer State
	BUF — Buffer Name
	POS — Visible Text Position
	LINE — Point's Line Number
	VC — Version Control State
	MAJOR — Major Mode Name
	MINOR — Minor Modes
	The Mode Line and the Mouse
	Optional Mode Line Features

	Frames
	Frame Commands
	Frames and Monitors
	Controlling Graphical Window Elements
	Customizing Frame Appearance
	Saving Frame Configurations
	Frames in Non-Graphical Mode

	Files
	Visiting Files
	Find File at Point
	Persisting Files Across Sessions
	Large Files
	Saving Files
	Read-Only Buffers, or, Emacs is More
	Reverting Buffers
	Auto-Reverting (Watching Files)
	Backup Files
	Auto-Save Files
	Lock Files
	Files Modified Behind Emacs's Back
	Compressed Files
	Encrypted Files
	Archive Files
	Document Files (PDFs and the Like)
	Image Files
	Binary Data Files
	UNFINISHED Quoting File Names
	UNFINISHED Filesets
	References

	Directory Editing with Dired
	Basic File Operations
	 Subdirectories
	Compressing and Archiving Files
	Deleting Files by Flagging
	Marking Files
	The Mark Keymap
	Mass Name Changes by Regular Expression
	What Went Wrong?
	Writable Dired
	Two-Panel Dired
	Searching and Replacing
	Diffing and Comparing
	Reverting and Sorting the Dired Buffer
	Omitting Uninteresting Files
	Running External Commands
	Image-Dired
	Tagging and Commenting Images
	Remote Directories
	More Dired Entry Points
	Third-Party Directory Tools
	References

	Searching …
	Incremental Search
	Occurrences
	Multi-Buffer Searching

	… and Replacing
	Query Replace with a Regular Expression
	Other Entry Points

	Meet the Greps
	The *grep* Buffer and Grep Mode
	next/error Integration
	Indirect Editing with Writable Grep
	Plain Old M-x grep
	Local Directory Grep with M-x lgrep
	Recursive Grep with M-x rgrep
	Just the Skeleton with M-x grep-find
	Grep Files Aliases
	Grepping from Dired
	Which grep Is It, Really?

	Regular Expressions
	Powerful Pattern Matching
	Unique Aspects of Emacs Regexps
	References

	Unlimited Undo with Redo
	Just Undo It
	What, When, and Where Can You Undo?
	How Unlimited is Unlimited?
	Undo in the Region (Selective Undo)
	Redo, or Undo the Undos
	What Can't You Undo?
	The undo/tree Alternative

	Approaching Programming: Keyboard Macros
	Your First Macro
	Repeating a Macro
	Aborting a Macro Definition
	Line-by-Line Macros
	What Happens If You Make a Mistake?
	Minibuffer Prompts
	The Keyboard Macro Map
	A Musical Example

	The Customize Facility
	Entry Points
	Experiment Without Fear
	Changing the Value of a Variable
	Customizing Multiple Options
	Customizing a Face
	Customize Buffers Are Non-Modal
	Long-Term Customization Management
	Where Are Customizations Saved?
	Customizing Key Bindings

	The Package Manager
	Configuration
	About Packages
	Searching and Browsing
	Installing Packages
	Package Maintenance
	Should You Write Your Own Packages?
	Security Issues

	Updates and Bugs
	Emacs Updates
	Emacs Bugs

	Exiting Emacs
	The Desktop: Persisting Your Buffers

	Starting Emacs!
	File Arguments
	Occasional Options
	Scripting Options

	II ADDITIONAL TOPICS
	Completion at Point
	 Dynamic Abbrevs
	 Pop-up Menu Completion

	Registers
	Register Preview and Contents
	Text in Registers
	Numbers in Registers
	Rectangles in Registers
	Buffer Positions in Registers
	Filenames in Registers
	Window and Frame Configurations in Registers
	Keyboard Macros in Registers
	Saving Your Registers

	Rectangles
	Inactive Rectangular Regions
	Old- and New-School Rectangle Commands
	Empty Rectangles
	Yanking Rectangles is Subtle

	Bookmarks
	Bookmark Maintenance with the Bookmark Menu
	Bookmark Annotations

	Abbreviations
	Multi-Word Expansions
	Abbrevs and Case
	Unexpanding Unhappy Expansions
	Prefixed Abbrevs
	Turning abbrev/mode on in Your Init File
	Listing and Editing Abbrevs
	Saving Your Abbrevs

	Recursive Edit
	Exiting a Recursive Edit

	Visual Display and Color
	Fonts and Faces
	Themes and Colors
	The Cursor
	Highlighting Text
	Visualizing Whitespace

	Manipulating Plain Text
	Mass Line Deletions
	Sorting Lines
	Numbering Lines
	Whitespace and Blank Lines
	Indenting Lines
	Tabs and Tab Stops
	Case Changing
	Tables
	References

	Folding Text
	Markup-Based Folding
	Implicit Folding

	International Character Set Support
	Language Environment
	Inserting the Occasional Funny Character
	Input Methods
	Coding Systems
	Line Endings

	Remote File Editing with Tramp
	Getting Started
	Troubleshooting
	Tramp Methods
	Multi-Hop Connections
	Connection Cleanup
	References

	Client / Server
	emacsclient Operating Modes
	Edit, Compile, Run Cycle
	Remote Server
	Starting Up the Server
	Shutting Down the Server
	Troubleshooting
	Midnight Mode

	Ubiquitous Capture & Note Taking
	Remember
	org/capture

	Org Mode
	Org as a Simple Outliner
	Org's Rich Markup
	Simple Publishing (Exporting)
	The Fancy Bits
	Org Outside of Emacs
	References

	Printing
	Plain Printing
	Postscript Printing
	``Printing'' to HTML
	Configuring Printing for Unix

	UNFINISHED Modal Editing
	Third-Party Packages
	Security Concerns
	File- and Directory-Local Variables
	Third-Party Packages
	Evaluating Code in Org Mode

	Authentication
	File-Based Authentication
	.authinfo File Format
	References

	Programming the Lisp Machine
	Customization in Emacs Lisp
	Defining Your Own Commands
	References

	The Emacs Community
	Project GNU
	The GNU Emacs FAQ
	The Emacs Wiki
	Mailing Lists
	Web Sites and Blogs
	Github
	Videos, Screencasts, and Podcasts
	IRC
	EmacsConf

	III NEVER LEAVE EMACS: APPLICATIONS
	External Commands, Shells and Terminals
	Running One Command
	Run Commands from Dired
	Interactive Shells
	Terminal Emulation
	 Remote Shells
	Eshell

	Browsing the Web
	EWW: Emacs Web Wowser
	Browse URL
	Goto Address Mode
	HTTP Cookies
	User Options
	References

	The Calendar, Diary, and Clocks
	Setting Up the Calendar
	Motion
	Counting Days
	Holidays
	The Emacs Ephemeris: Astronomical Information
	To and From Other Calendar Systems
	Printed Calendars
	The Diary
	Appointments
	Customization
	Clocks and Time
	References

	Version Control
	Supported Version Control Systems
	VC ``Modes''
	VC File Mode in One Command
	More VC File Mode Commands
	Initializing a Repository
	Diffing and Comparing
	Examining the Logs
	Viewing Older Revisions
	Discarding Changes
	Other File Operations
	Tagging
	Branching and Merging
	Working With Remote Repositories
	VC Project Mode
	VC Grepping

	Diffing and Merging
	Simple Diffing
	Ediff
	Merging
	Integrating Ediff into External Programs
	Comparing and Merging Directories
	Patching
	Emerge
	Simple Window Comparison
	References

	Playing Music
	 EMMS: Emacs Multimedia System
	Music Player Daemon (MPD)
	References

	Mail and News
	Sending Mail
	Reading Mail
	Browsing Mbox Files
	References

	Web and News Feeds (Syndication)
	Newsticker
	Other Feed Readers
	UNFINISHED Podcasts

	UNFINISHED Slideshow Presentations
	UNFINISHED Address Book: The Insidious Big Brother Database (BBDB)
	UNFINISHED Drawing Pictures
	Picture Mode
	Artist Mode

	UNFINISHED DNS Lookups
	UNFINISHED EUDC: Emacs Unified Directory Client (LDAP)
	References

	UNFINISHED FTP (File Transfer Protocol)
	UNFINISHED Accessing SQL Databases
	Editing Processes with proced
	Commands That Change the Display of Processes
	Marking Processes
	Killing and Renicing

	UNFINISHED Unix Manual Pages
	UNFINISHED Calc
	Interactive Tutorial
	Embedded Mode
	Unit Conversion
	References

	Passwords and Password Managers
	Password Generators
	Password Managers

	EasyPG Assistant
	On Passwords
	Symmetric-Key Operations
	Public-Key Operations
	Caching Passwords Via the GPG-AGENT
	Encryption Commands in Dired
	Email
	References

	UNFINISHED Emacs Speaks Statistics: Data Analysis
	UNFINISHED Maps
	UNFINISHED Chat
	Internet Relay Chat (IRC)
	Jabber

	UNFINISHED Emacs as Window Manager
	Games and Amusements
	Actual Games
	Puzzles
	Cryptography
	Display Hacks
	Jokes / Wackiness
	References

	IV EMACS FOR…
	UNFINISHED Emacs for Writers
	UNFINISHED Text Mode
	Outline Mode
	UNFINISHED Filling
	UNFINISHED Word Wrap
	UNFINISHED Electric Quotes
	UNFINISHED Spell Check
	UNFINISHED Dictionaries and Thesauri
	UNFINISHED Footnote Minor Mode
	UNFINISHED Managing Bibliographic Citations
	UNFINISHED Typing Tutors
	UNFINISHED Presentation Slide Shows
	UNFINISHED Generating Web Pages and Web Sites
	UNFINISHED Typesetting and Publishing

	UNFINISHED Emacs for Programmers
	UNFINISHED Emacs: Text Editor or IDE? Yes.
	UNFINISHED Commenting and Uncommenting
	UNFINISHED Change Logs
	UNFINISHED Compiling Code
	UNFINISHED Managing Projects
	UNFINISHED On-the-Fly Syntax Checking
	UNFINISHED Tags and The Xref Subsystem
	UNFINISHED Debugger Support
	UNFINISHED Emacs Lisp Programming

	UNFINISHED Emacs for Web Developers

	V THE BACK OF THE BOOK
	Appendices
	Varieties of Emacs: A History
	Historical Firsts & Innovations
	Emacs vs. The Unix Philosophy
	UNFINISHED Compilation Mode and its Many Descendants
	 The Great Sentence-Ending Controversy
	Install Emacs on ChromeOS
	The Famous Canards
	The Troublesome Meta Key
	The ESC Prefix
	The Least to Know About Public Key Cryptography
	UNFINISHED Emacs on Your Phone
	An Initial Init File

	Bibliography
	Index
	Colophon
	Photo and Illustration Credits
	Acknowledgments
	About the Author

